# vibethinker
**Repository Path**: mirrors/vibethinker
## Basic Information
- **Project Name**: vibethinker
- **Description**: VibeThinker-1.5B 是一款拥有 15 亿个参数的密集模型,它挑战了小型模型天生缺乏稳健推理能力的传统观念
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: main
- **Homepage**: https://www.oschina.net/p/vibethinker-1-5b
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2025-11-14
- **Last Updated**: 2025-12-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# VibeThinker

🤗 Hugging Face   |   🤖 Model Scope   |   📄 Techical Report |   🏆 arxiv paper
## Introduction
VibeThinker-1.5B is a 1.5B-parameter dense model that challenges the prevailing notion that small models inherently lack robust reasoning capabilities. Developed with an innovative post-training methodology centered on the **"Spectrum-to-Signal Principle (SSP)"**, VibeThinker-1.5B demonstrates superior reasoning capabilities compared to closed-source models Magistral Medium and Claude Opus 4, while achieving performance on par with open-source
models like GPT OSS-20B Medium.
Most remarkably, VibeThinker-1.5B surpasses the initial DeepSeek R1 model—which is over 400 times larger—across three challenging mathematical benchmarks: AIME24 (80.3 vs. 79.8), AIME25 (74.4 vs. 70.0), and HMMT25 (50.4 vs. 41.7).

## News
[2025.11.19] 🔥🔥VibeThinker-1.5B hit #1 on huggingface’s trending models today!
[2025.11.11] 🎉🎉🎉 VibeThinker-1.5B is now open source! The model weights and technical report can be accessed via the links at the top.
[2025.11.05] 📢📢📢 VibeThinker-1.5B will be open-sourced soon. Stay tuned!
## Key Features
- **Ultra-Efficient**: VibeThinker-1.5B redefines the efficiency frontier for reasoning models, achieving state-of-the-art performance in mathematical and coding tasks with only 1.5B parameters—100× to 600× smaller than giants like Kimi K2 (1000B+) and DeepSeek R1(671B).

- **Innovative Methodology**: We propose an innovative post-training technique centered on the “Spectrum-to-Signal Principle (SSP)”. This framework systematically enhances output diversity by first employing a “Two-Stage Diversity-Exploring Distillation” in the SFT phase to generate a broad spectrum of solutions, followed by the “MaxEnt-Guided Policy Optimization (MGPO)” framework in the RL phase to amplify the correct signal.

- **Outstanding Capabilities**: Despite a substantial parameter gap—competing with models 10 to hundreds of times larger—our 1.5B model demonstrates remarkable performance. On the AIME24, AIME25, and HMMT25 benchmarks, it surpasses open-source contenders like DeepSeek R1-0120 and GPT-OSS-20B-Medium, while achieving results comparable to MiniMax-M1.

- **Cost-Effective**: While state-of-the-art models like DeepSeek R1 and MiniMax-M1 incur post-training costs of $294K and $535K respectively, our approach achieves this for just $7,800. This represents a reduction by a factor of “30 to 60”, fundamentally changing the economics of developing high-performance reasoning models.

## Model Downloads
The model checkpoint is available at: [Hugging Face](https://huggingface.co/WeiboAI/VibeThinker-1.5B) and [ModelScope](https://modelscope.cn/models/WeiboAI/VibeThinker-1.5B).
## Eval
If you wish to reproduce the results reported in our technical report, the evaluation program and usage guide have been prepared and are available at the following links.: [Math Eval](./eval/math/README.md) and [Code Eval](./eval/code/README.md).
Sample responses from some benchmarks:[here](https://drive.google.com/drive/folders/1qom754QSjujDI98Wv8LIKTaTszPkAN6q?usp=drive_link).
## Usage Guidelines
**We recommend using this model for competitive-style math and coding problems.**
To facilitate quick verification by the community, we recommend the following parameter settings: **temperature: 0.6 or 1.0, max token length: 40960, top_p: 0.95, top_k: -1.**
## Quick Start
Required: **transformers>=4.54.0**
Recommended for better inference performance: **vLLM==0.10.1 or SGLang>=0.4.9.post6**
Here is a code snippet to show you how to use the chat model with transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
class VibeThinker:
def __init__(self, model_path):
self.model_path = model_path
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
low_cpu_mem_usage=True,
torch_dtype="bfloat16",
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
def infer_text(self, prompt):
messages = [
{"role": "user", "content": prompt}
]
text = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
generation_config = dict(
max_new_tokens=40960,
do_sample=True,
temperature=0.6, # 0.6 or 1.0, you can set it according to your needs
top_p=0.95,
top_k=None # in vLLM or SGlang, please set top_k to -1, it means skip top_k for sampling
)
generated_ids = self.model.generate(
**model_inputs,
generation_config=GenerationConfig(**generation_config)
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
if __name__ == '__main__':
model = VibeThinker('Your model path')
prompt = 'Your Prompt'
print(model.infer_text(prompt))
```
## License
This code repository is licensed under [the MIT License](https://github.com/WeiboAI/VibeThinker/blob/main/LICENSE).
## Citations
If you use VibeThinker in your research or product, please cite:
```
@misc{xu2025tinymodelbiglogic,
title={Tiny Model, Big Logic: Diversity-Driven Optimization Elicits Large-Model Reasoning Ability in VibeThinker-1.5B},
author={Sen Xu and Yi Zhou and Wei Wang and Jixin Min and Zhibin Yin and Yingwei Dai and Shixi Liu and Lianyu Pang and Yirong Chen and Junlin Zhang},
year={2025},
eprint={2511.06221},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2511.06221},
}
```