# HybridBackend **Repository Path**: mirrors_alibaba/HybridBackend ## Basic Information - **Project Name**: HybridBackend - **Description**: A high-performance framework for training wide-and-deep recommender systems on heterogeneous cluster - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-02 - **Last Updated**: 2025-10-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HybridBackend [![cibuild](https://github.com/alibaba/HybridBackend/actions/workflows/cibuild.yaml/badge.svg?branch=main&event=push)](https://github.com/alibaba/HybridBackend/actions/workflows/cibuild.yaml) [![readthedocs](https://readthedocs.org/projects/hybridbackend/badge/?version=latest)](https://hybridbackend.readthedocs.io/en/latest/?badge=latest) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](http://makeapullrequest.com) [![license](https://img.shields.io/badge/License-Apache%202.0-brightgreen.svg)](https://opensource.org/licenses/Apache-2.0) HybridBackend is a high-performance framework for training wide-and-deep recommender systems on heterogeneous cluster. ## Features - Memory-efficient loading of categorical data - GPU-efficient orchestration of embedding layers - Communication-efficient training and evaluation at scale - Easy to use with existing AI workflows ## Usage A minimal example: ```python import tensorflow as tf import hybridbackend.tensorflow as hb ds = hb.data.Dataset.from_parquet(filenames) ds = ds.batch(batch_size) # ... with tf.device('/gpu:0'): embs = tf.nn.embedding_lookup_sparse(weights, input_ids) # ... ``` Please see [documentation](https://hybridbackend.readthedocs.io/en/latest/) for more information. ## Install ### Method 1: Install from PyPI `pip install {PACKAGE}` | `{PACKAGE}` | Dependency | Python | CUDA | GLIBC | Data Opt. | Embedding Opt. | Parallelism Opt. | | ----------------------------------------------------------------------------------------- | ----------------------------------------------------------------------- | ------ | ---- | ------ | --------- | -------------- | ---------------- | | [hybridbackend-tf115-cu121](https://pypi.org/project/hybridbackend-tf115-cu121/) | [TensorFlow 1.15](https://github.com/NVIDIA/tensorflow) | 3.8 | 12.1 | >=2.31 | ✓ | ✓ | ✓ | | [hybridbackend-tf115-cu100](https://pypi.org/project/hybridbackend-tf115-cu100/) | [TensorFlow 1.15](https://github.com/tensorflow/tensorflow/tree/r1.15) | 3.6 | 10.0 | >=2.27 | ✓ | ✓ | ✗ | | [hybridbackend-tf115-cpu](https://pypi.org/project/hybridbackend-tf115-cpu/) | [TensorFlow 1.15](https://github.com/tensorflow/tensorflow/tree/r1.15) | 3.6 | - | >=2.24 | ✓ | ✗ | ✗ | ### Method 2: Build from source See [Building Instructions](https://github.com/alibaba/HybridBackend/blob/main/BUILD.md). We also provide built docker images for latest [DeepRec](https://github.com/alibaba/DeepRec): `registry.cn-shanghai.aliyuncs.com/pai-dlc/hybridbackend:1.0.0-deeprec-py3.6-cu114-ubuntu18.04` ## License HybridBackend is licensed under the [Apache 2.0 License](LICENSE). ## Community - Please see [Contributing Guide](https://github.com/alibaba/HybridBackend/blob/main/CONTRIBUTING.md) before your first contribution. - Please [register as an adopter](https://github.com/alibaba/HybridBackend/blob/main/ADOPTERS.md) if your organization is interested in adoption. We will discuss [RoadMap](https://github.com/alibaba/HybridBackend/blob/main/ROADMAP.md) with registered adopters in advance. - Please cite [HybridBackend](https://ieeexplore.ieee.org/document/9835450) in your publications if it helps: ```text @inproceedings{zhang2022picasso, title={PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems}, author={Zhang, Yuanxing and Chen, Langshi and Yang, Siran and Yuan, Man and Yi, Huimin and Zhang, Jie and Wang, Jiamang and Dong, Jianbo and Xu, Yunlong and Song, Yue and others}, booktitle={2022 IEEE 38th International Conference on Data Engineering (ICDE)}, year={2022}, organization={IEEE} } ``` ## Contact Us If you would like to share your experiences with others, you are welcome to contact us in DingTalk: [![dingtalk](https://github.com/alibaba/HybridBackend/raw/main/docs/images/dingtalk.png)](https://qr.dingtalk.com/action/joingroup?code=v1,k1,VouhbeuTwXYEgaLzSOE8o6VF2kTHVJ8lw5h93WbZW8o=&_dt_no_comment=1&origin=11)