# ml-rapids **Repository Path**: mirrors_jmrozanec/ml-rapids ## Basic Information - **Project Name**: ml-rapids - **Description**: Fast implementation of incremental learning methods (C++), which are exposed in Python and NodeJS. - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-22 - **Last Updated**: 2026-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ml-rapids: Incremental learning written in C++ exposed in Python `ml-rapids` implements incremental learning methods in C++ and exposes them via SWIG in Python. Installation can be achieved simply with `pip install ml_rapids`. You can test your installation with running Python: ```python # testing ml-rapids import ml_rapids ml_rapids.test() ``` Further documentation is available here: * [Users' Manual](https://github.com/JozefStefanInstitute/ml-rapids/blob/master/docs/MANUAL.md) ## Implemented incremental learning methods * Classification * Majority Class * Naive Bayes * Logistic Regression * Perceptron * VFDT (Very Fast Decision Trees) aka Hoeffding Trees * HAT (Hoeffding Adaptive Trees) * Bagging * Regression * / All the methods implement [`sklearn`](https://scikit-learn.org/) incremantal learner interface (includes `fit`, `partial_fit` and `predict` methods). ## Future plans Streaming random forest on top of Hoeffding trees will be implemented. The library will be exposed via also via `npm` packages. ## Development Development notes can be read [here](https://github.com/JozefStefanInstitute/ml-rapdis/docs/DEV.md). Python deployment notes can be read [here](https://github.com/JozefStefanInstitute/ml-rapdis/docs/PYPI-DEPLOY.md). ## Acknowledgements `ml-rapids` is developed by AILab at Jozef Stefan Institute. This repository is based strongly on [streamDM-cpp](https://github.com/huawei-noah/streamDM-Cpp). Project has received funding from European Union's Horizon 2020 Research and Innovation Programme under the Grant Agreement [776115](http://www.perceptivesentinel.eu/) (PerceptiveSentinel).