# Paper2Agent **Repository Path**: mirrors_trending/Paper2Agent ## Basic Information - **Project Name**: Paper2Agent - **Description**: Paper2Agent is a multi-agent AI system that automatically transforms research papers into interactive AI agents with minimal human input. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2025-09-29 - **Last Updated**: 2025-10-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Paper2Agent Logo

# Paper2Agent: Reimagining Papers As AI Agents ## πŸ“– Overview `Paper2Agent` is a multi-agent AI system that automatically transforms research papers into interactive AI agents with minimal human input. Here are some [Demos](#-demos) of the Paper2Agent-generated agent. ## πŸš€ Quick Start ### Basic Usage Automatically detects and runs all relevant tutorials from a research paper’s codebase. > **⚠️ Prerequisites**: Complete the [installation & setup](#️-installation--setup) below before running Paper2Agent. > > **⏱️ Runtime & Cost**: Processing time varies from 30 minutes to 3+ hours based on codebase complexity. Estimated cost: ~$15 for complex repositories like AlphaGenome using Claude Sonnet 4 (one-time cost). ```bash cd Paper2Agent bash Paper2Agent.sh \ --project_dir \ --github_url ``` ### Advanced Usage #### Targeted Tutorial Processing Process only specific tutorials by title or URL: ```bash bash Paper2Agent.sh \ --project_dir \ --github_url \ --tutorials ``` #### Repository with API Key For repositories requiring authentication: ```bash bash Paper2Agent.sh \ --project_dir \ --github_url \ --api ``` ### Parameters **Required:** - `--project_dir `: Name of the project directory to create - Example: `TISSUE_Agent` - `--github_url `: GitHub repository URL to analyze - Example: `https://github.com/sunericd/TISSUE` **Optional:** - `--tutorials `: Filter tutorials by title or URL - Example: `"Preprocessing and clustering"` or tutorial URL - `--api `: API key for repositories requiring authentication - Example: `your_api_key_here` ### Examples #### TISSUE Agent Create an AI agent from the [TISSUE](https://github.com/sunericd/TISSUE) research paper codebase for uncertainty-calibrated single-cell spatial transcriptomics analysis: ```bash bash Paper2Agent.sh \ --project_dir TISSUE_Agent \ --github_url https://github.com/sunericd/TISSUE ``` #### Scanpy Agent for Preprocessing and Clustering Create an AI agent from the [Scanpy](https://github.com/scverse/scanpy) research paper codebase for single-cell analysis preprocessing and clustering: ```bash # Filter by tutorial title bash Paper2Agent.sh \ --project_dir Scanpy_Agent \ --github_url https://github.com/scverse/scanpy \ --tutorials "Preprocessing and clustering" # Filter by tutorial URL bash Paper2Agent.sh \ --project_dir Scanpy_Agent \ --github_url https://github.com/scverse/scanpy \ --tutorials "https://github.com/scverse/scanpy/blob/main/docs/tutorials/basics/clustering.ipynb" ``` #### AlphaGenome Agent Create an AI agent from the [AlphaGenome](https://github.com/google-deepmind/alphagenome) research paper codebase for genomic data interpretation: ```bash bash Paper2Agent.sh \ --project_dir AlphaGenome_Agent \ --github_url https://github.com/google-deepmind/alphagenome \ --api ``` ## βš™οΈ Installation & Setup ### Prerequisites - **Python**: Version 3.10 or higher - **Claude Code**: Install following instructions at [anthropic.com/claude-code](https://www.anthropic.com/claude-code) ### Installation Steps 1. **Clone the Paper2Agent Repository** ```bash git clone https://github.com/jmiao24/Paper2Agent.git cd Paper2Agent ``` 2. **Install Python Dependencies** ```bash pip install fastmcp ``` 3. **Install and Configure Claude Code** ```bash npm install -g @anthropic-ai/claude-code claude ``` ## πŸ€– How to Create a Paper Agent? To streamline usage, we recommend creating Paper Agents by connecting Paper MCP servers to an AI coding agent, such as [Claude Code](https://www.anthropic.com/claude-code) or the [Google Gemini CLI](https://google-gemini.github.io/gemini-cli/) (it's free with a Google account!). We are also actively developing our own base agent, which will be released soon. ### Automatic Launch After pipeline completion, Claude Code will automatically open with your new MCP server loaded. ### Manual Launch with Local MCP Server To restart your agent later: ```bash cd fastmcp install claude-code /src/_mcp.py \ --python /-env/bin/python ``` ### Manual Launch with Remote MCP Server Hosted on Hugging Face To create a paper agent in Claude Code with the Paper MCP server of interest, use the following script with your own working directory, MCP name, and server URL: ```bash bash launch_remote_mcp.sh \ --working_dir \ --mcp_name \ --mcp_url ``` For example, to create an AlphaGenome Agent, run: ```bash bash launch_remote_mcp.sh \ --working_dir analysis_dir \ --mcp_name alphagenome \ --mcp_url https://Paper2Agent-alphagenome-mcp.hf.space ``` βœ… You will now have an **AlphaGenome Agent** ready for genomics data interpretation. You can input the query like: ``` Analyze heart gene expression data with AlphaGenome MCP to identify the causal gene for the variant chr11:116837649:T>G, associated with Hypoalphalipoproteinemia. ``` To reuse the AlphaGenome agent, run ```bash cd analysis_dir claude ``` ### Verification Verify your agent is loaded: ```bash claude mcp list ``` or use `\mcp` inside Claude Code. You should see your repository-specific MCP server listed. Screenshot 2025-09-15 at 10 36 00β€―PM ## πŸ“ Output Structure After completion, your project will contain: ``` / β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ _mcp.py # Generated MCP server β”‚ └── tools/ β”‚ └── .py # Extracted tools from each tutorial β”œβ”€β”€ -env/ # Isolated Python environment β”œβ”€β”€ repo/ β”‚ └── / # Cloned repository with original code β”œβ”€β”€ claude_outputs/ β”‚ β”œβ”€β”€ step1_output.json # Tutorial scanner results β”‚ β”œβ”€β”€ step2_output.json # Tutorial executor results β”‚ β”œβ”€β”€ step3_output.json # Tool extraction results β”‚ └── step4_output.json # MCP server creation results β”œβ”€β”€ reports/ β”‚ β”œβ”€β”€ tutorial-scanner.json # Tutorial discovery analysis β”‚ β”œβ”€β”€ tutorial-scanner-include-in-tools.json # Tools inclusion decisions β”‚ β”œβ”€β”€ executed_notebooks.json # Notebook execution summary β”‚ └── environment-manager_results.md # Environment setup details β”œβ”€β”€ tests/ β”‚ β”œβ”€β”€ code// # Test code for extracted tools β”‚ β”œβ”€β”€ data// # Test data files β”‚ β”œβ”€β”€ results// # Test execution results β”‚ └── logs/ # Test execution logs β”œβ”€β”€ notebooks/ β”‚ └── / β”‚ β”œβ”€β”€ _execution_final.ipynb # Executed tutorial β”‚ └── images/ # Generated plots and visualizations └── tools/ # Additional utility scripts ``` ### Key Output Files and Directories | File/Directory | Description | |----------------|-------------| | `src/_mcp.py` | Main MCP server file that Claude Code loads | | `src/tools/.py` | Individual tool modules extracted from each tutorial | | `-env/` | Isolated Python environment with all dependencies | ## 🎬 Demos Below, we showcase demos of AI agents created by Paper2Agent, illustrating how each agent applies the tools from its source paper to tackle scientific tasks. ### 🧬 AlphaGenome Agent for Genomic Data Interpretation Example query: ``` Analyze heart gene expression data with AlphaGenome MCP to identify the causal gene for the variant chr11:116837649:T>G, associated with Hypoalphalipoproteinemia. ``` https://github.com/user-attachments/assets/34aad25b-42b3-4feb-b418-db31066e7f7b ### πŸ—ΊοΈ TISSUE Agent for Uncertainty-Aware Spatial Transcriptomics Analysis Example query: ``` Calculate the 95% prediction interval for the spatial gene expression prediction of gene Acta2 using TISSUE MCP. This is my data: Spatial count matrix: Spatial_count.txt Spatial locations: Locations.txt scRNA-seq count matrix: scRNA_count.txt ``` https://github.com/user-attachments/assets/2c8f6368-fa99-4e6e-b7b5-acc12f741655 ### 🧫 Scanpy Agent for Single-Cell Data Preprocessing Example query: ``` Use Scanpy MCP to preprocess and cluster the single-cell dataset pbmc_all.h5ad. ``` ## πŸ”— Connectable Paper MCP Servers * AlphaGenome: https://Paper2Agent-alphagenome-mcp.hf.space * Scanpy: https://Paper2Agent-scanpy-mcp.hf.space * TISSUE: https://Paper2Agent-tissue-mcp.hf.space ## πŸ“š Citation ``` @misc{miao2025paper2agent, title={Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents}, author={Jiacheng Miao and Joe R. Davis and Jonathan K. Pritchard and James Zou}, year={2025}, eprint={2509.06917}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2509.06917}, } ```