# DHN_PyTorch **Repository Path**: mrggz/DHN_PyTorch ## Basic Information - **Project Name**: DHN_PyTorch - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-08 - **Last Updated**: 2021-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Hashing Network for Efficient Similarity Retrieval ## REQUIREMENTS `pip install -r requirements.txt` 1. pytorch >= 1.0 2. loguru ## DATASETS 1. [CIFAR-10](https://pan.baidu.com/s/1YJVe-tTfWTSKHMSYnxfjVg) Password: aemd 2. [NUS-WIDE](https://pan.baidu.com/s/1qVKFQz4_PbQX0CrSWwUwYw) Password: msfv 3. [Imagenet100](https://pan.baidu.com/s/17koNbdMLIYHgPFEFzjblvQ) Password: xpab ## USAGE ``` usage: run.py [-h] [--dataset DATASET] [--root ROOT] [--code-length CODE_LENGTH] [--arch ARCH] [--batch-size BATCH_SIZE] [--lr LR] [--max-iter MAX_ITER] [--num-workers NUM_WORKERS] [--topk TOPK] [--gpu GPU] [--lamda LAMDA] [--seed SEED] [--evaluate-interval EVALUATE_INTERVAL] DHN_PyTorch optional arguments: -h, --help show this help message and exit --dataset DATASET Dataset name. --root ROOT Path of dataset --code-length CODE_LENGTH Binary hash code length. --arch ARCH CNN model name.(default: alexnet) --batch-size BATCH_SIZE Batch size.(default: 256) --lr LR Learning rate.(default: 1e-5) --max-iter MAX_ITER Number of iterations.(default: 500) --num-workers NUM_WORKERS Number of loading data threads.(default: 6) --topk TOPK Calculate map of top k.(default: all) --gpu GPU Using gpu.(default: False) --lamda LAMDA Hyper-parameter.(default: 1) --seed SEED Random seed.(default: 3367) --evaluate-interval EVALUATE_INTERVAL Evaluation interval.(default: 10) ``` ## EXPERIMENTS CNN model: Alexnet. cifar10: 1000 query images, 5000 training images, MAP@ALL. nus-wide: Top 21 classes, 2100 query images, 10500 training images, MAP@5000. imagenet100: Top 100 classes, 5000 query images, 10000 training images, MAP@1000. bits | 16 | 32 | 48 | 128 :-: | :-: | :-: | :-: | :-: cifar10@ALL | 0.7275 | 0.7353 | 0.7302 | 0.7386 nus-wide-tc21@5000 | 0.8194 | 0.8326 | 0.8396 | 0.8443 imagenet100@1000 | 0.2659 | 0.3703 | 0.4122 | 0.4743