# ML-notes **Repository Path**: nonli/ML-notes ## Basic Information - **Project Name**: ML-notes - **Description**: notes about machine learning - **Primary Language**: Python - **License**: GPL-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 5 - **Created**: 2020-10-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ML-notes [![GitHub issues](https://img.shields.io/github/issues/Sakura-gh/ML-notes?color=ffa07a)](https://github.com/Sakura-gh/ML-notes/issues) [![GitHub forks](https://img.shields.io/github/forks/Sakura-gh/ML-notes?color=20b2aa)](https://github.com/Sakura-gh/ML-notes/network) [![GitHub stars](https://img.shields.io/github/stars/Sakura-gh/ML-notes?color=66cdaa)](https://github.com/Sakura-gh/ML-notes/stargazers) [![GitHub license](https://img.shields.io/github/license/Sakura-gh/ML-notes?color=88cff1)](https://github.com/Sakura-gh/ML-notes/blob/master/LICENSE) notes about machine learning 很喜欢一句话:**应用之道,存乎一心**,与大家共勉 > 做了一段时间的笔记,发现真正去做project的时候,自己还是很生疏的,machine learning理论学习得再详细,最终也还是要落于实践才行,这段时间我将陆续将自己所做的几个Assignment上传至github上,尽量注释详细,并使用多种方法进行对比验证 ##### html链接: [1_Introduction]( https://sakura-gh.gitee.io/ml-notes/ML-notes-html/1_Introduction.html) [2_Regression Case Study]( https://sakura-gh.gitee.io/ml-notes/ML-notes-html/2_Regression-Case-Study.html) [3_Regression demo(Adagrad)]( https://sakura-gh.gitee.io/ml-notes/ML-notes-html/3_Regression-demo(Adagrad).html) [4_Where does the error come from](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/4_Where-does-the-error-come-from.html) [5_Gradient Descent](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/5_Gradient-Descent.html) [6_Classification](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/6_Classification.html) [7_Logistic Regression](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/7_Logistic-Regression.html) [8_Deep Learning](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/8_Deep-Learning.html) [9_Backpropagation](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/9_Backpropagation.html) [10_Keras](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/10_Keras.html) [11_Convolutional Neural Network part1](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/11_Convolutional-Neural-Network-part1.html) [12_Convolutional Neural Network part2](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/12_Convolutional-Neural-Network-part2.html) [13_Tips for Deep Learning](https://sakura-gh.gitee.io/ml-notes/ML-notes-html/13_Tips-for-Deep-Learning.html) [14_Why Deep](https://sakura-gh.gitee.io/ml-notes/ML-notes/ML-notes-html/14_Why-Deep.html) ##### csdn博客链接: [机器学习系列1-机器学习概念及介绍](https://blog.csdn.net/weixin_44406200/article/details/104060561) [机器学习系列2-回归案例研究](https://blog.csdn.net/weixin_44406200/article/details/104071036) [梯度下降代码举例:Gradient Descent Demo(Adagrad)](https://blog.csdn.net/weixin_44406200/article/details/104075986) [机器学习系列4-模型的误差来源及减少误差的方法](https://blog.csdn.net/weixin_44406200/article/details/104088554) [机器学习系列5-梯度下降法](https://blog.csdn.net/weixin_44406200/article/details/104256006) [机器学习系列6-分类问题(概率生成模型)](https://blog.csdn.net/weixin_44406200/article/details/104272160) [机器学习系列7-逻辑回归](https://blog.csdn.net/weixin_44406200/article/details/104288916) [机器学习系列8-深度学习简介](https://blog.csdn.net/weixin_44406200/article/details/104299958) [机器学习系列9-反向传播](https://blog.csdn.net/weixin_44406200/article/details/104310991) [机器学习系列10-手写数字识别(Keras2.0)](https://blog.csdn.net/weixin_44406200/article/details/104328947) [机器学习系列11-卷积神经网络CNN part1](https://blog.csdn.net/weixin_44406200/article/details/104370738) [机器学习系列12-卷积神经网络CNN part2](https://blog.csdn.net/weixin_44406200/article/details/104392592) [机器学习系列13-深度学习的技巧和优化方法](https://blog.csdn.net/weixin_44406200/article/details/104430737) [机器学习系列14-为什么要做“深度”学习](https://blog.csdn.net/weixin_44406200/article/details/104452873) ##### 代码链接: [Gradient Descent Demo(Adagrad)]( https://sakura-gh.github.io/ML-notes/code/Gradient-Descent-Demo/Gradient-Descent-Demo.html) [手写数字识别(Keras2.0)](/code/手写数字识别(Keras)/digits-detection.py) [手写数字识别CNN实现(Keras2.0)](/code/手写数字识别(Keras)/digits-detection-cnn.py) ##### 温馨提示: 图片加载可能会有些许缓慢,请耐心等待\\(\^o\^)/