diff --git a/docs/en/server/_toc.yaml b/docs/en/server/_toc.yaml
index dfe5c74ca109ede00cda70ac5f6e6c7badd3bb90..967007664f084888458cac509561873037a017fd 100644
--- a/docs/en/server/_toc.yaml
+++ b/docs/en/server/_toc.yaml
@@ -85,7 +85,9 @@ sections:
path: ./performance/kae_driver
- label: System Optimization
sections:
- - href: ./performance/atune/_toc.yaml
+ - href:
+ upstream: https://gitee.com/openeuler/A-Tune/blob/master/docs/en/24.03_LTS_SP2/_toc.yaml
+ path: ./atune
- label: Application Development
sections:
- href: ./development/application_dev/_toc.yaml
diff --git a/docs/en/server/performance/atune/_toc.yaml b/docs/en/server/performance/atune/_toc.yaml
deleted file mode 100644
index f5b3e06db14e597e7f24d749246976a10f6656ab..0000000000000000000000000000000000000000
--- a/docs/en/server/performance/atune/_toc.yaml
+++ /dev/null
@@ -1,14 +0,0 @@
-label: A_Tune User Guide
-isManual: true
-description: Optimized openEuler performance through AI_powered, automated tuning
-sections:
- - label: Getting to Know A_Tune
- href: ./getting_to_know_a_tune.md
- - label: Installation and Deployment
- href: ./installation_and_deployment.md
- - label: Usage Instructions
- href: ./usage_instructions.md
- - label: Native_Turbo
- href: ./native_turbo.md
- - label: Appendix
- href: ./appendix.md
diff --git a/docs/en/server/performance/atune/appendix.md b/docs/en/server/performance/atune/appendix.md
deleted file mode 100644
index 81568dbd22322b5003f19aa0d953edfc519004f3..0000000000000000000000000000000000000000
--- a/docs/en/server/performance/atune/appendix.md
+++ /dev/null
@@ -1,22 +0,0 @@
-# Appendix
-
-- [Appendix](#appendix)
- - [Acronyms and Abbreviations](#acronyms-and-abbreviations)
-
-## Acronyms and Abbreviations
-
-**Table 1** Terminology
-
-
Term
- |
-Description
- |
-
-
-profile
- |
-Set of optimization items and optimal parameter configuration.
- |
-
-
-
diff --git a/docs/en/server/performance/atune/figures/en-us_image_0214540398.png b/docs/en/server/performance/atune/figures/en-us_image_0214540398.png
deleted file mode 100644
index cea2292307b57854aa629ec102a5bc1b16d244a0..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/en-us_image_0214540398.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/figures/en-us_image_0227497000.png b/docs/en/server/performance/atune/figures/en-us_image_0227497000.png
deleted file mode 100644
index 3df66e5f25177cba7fe65cfb859fab860bfb7b46..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/en-us_image_0227497000.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/figures/en-us_image_0227497343.png b/docs/en/server/performance/atune/figures/en-us_image_0227497343.png
deleted file mode 100644
index a8654b170295b4b0be3c37187e4b227ca635fbc0..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/en-us_image_0227497343.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/figures/en-us_image_0231122163.png b/docs/en/server/performance/atune/figures/en-us_image_0231122163.png
deleted file mode 100644
index c61c39c5f5119d84c6799b1e17285a7fe313639f..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/en-us_image_0231122163.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/figures/en-us_image_0245342444.png b/docs/en/server/performance/atune/figures/en-us_image_0245342444.png
deleted file mode 100644
index 10f0fceb42c00c80ef49decdc0c480eb04c2ca6d..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/en-us_image_0245342444.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/figures/picture1.png b/docs/en/server/performance/atune/figures/picture1.png
deleted file mode 100644
index 624d148b98bc9890befbecc53f29d6a4890d06af..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/picture1.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/figures/picture4.png b/docs/en/server/performance/atune/figures/picture4.png
deleted file mode 100644
index c576fd0369008e847e6943d6f99351caccf9f3e5..0000000000000000000000000000000000000000
Binary files a/docs/en/server/performance/atune/figures/picture4.png and /dev/null differ
diff --git a/docs/en/server/performance/atune/getting_to_know_a_tune.md b/docs/en/server/performance/atune/getting_to_know_a_tune.md
deleted file mode 100644
index 78c84dd0df7194bca6669cbfcb8ee47ad437d49a..0000000000000000000000000000000000000000
--- a/docs/en/server/performance/atune/getting_to_know_a_tune.md
+++ /dev/null
@@ -1,68 +0,0 @@
-# Getting to Know A-Tune
-
-- [Getting to Know A-Tune](#getting-to-know-a-tune)
- - [Introduction](#introduction)
- - [Architecture](#architecture)
- - [Supported Features and Service Models](#supported-features-and-service-models)
-
-## Introduction
-
-An operating system \(OS\) is basic software that connects applications and hardware. It is critical for users to adjust OS and application configurations and make full use of software and hardware capabilities to achieve optimal service performance. However, numerous workload types and varied applications run on the OS, and the requirements on resources are different. Currently, the application environment composed of hardware and software involves more than 7000 configuration objects. As the service complexity and optimization objects increase, the time cost for optimization increases exponentially. As a result, optimization efficiency decreases sharply. Optimization becomes complex and brings great challenges to users.
-
-Second, as infrastructure software, the OS provides a large number of software and hardware management capabilities. The capability required varies in different scenarios. Therefore, capabilities need to be enabled or disabled depending on scenarios, and a combination of capabilities will maximize the optimal performance of applications.
-
-In addition, the actual business embraces hundreds and thousands of scenarios, and each scenario involves a wide variety of hardware configurations for computing, network, and storage. The lab cannot list all applications, business scenarios, and hardware combinations.
-
-To address the preceding challenges, openEuler launches A-Tune.
-
-A-Tune is an AI-based engine that optimizes system performance. It uses AI technologies to precisely profile business scenarios, discover and infer business characteristics, so as to make intelligent decisions, match with the optimal system parameter configuration combination, and give recommendations, ensuring the optimal business running status.
-
-
-
-## Architecture
-
-The following figure shows the A-Tune core technical architecture, which consists of intelligent decision-making, system profile, and interaction system.
-
-- Intelligent decision-making layer: consists of the awareness and decision-making subsystems, which implements intelligent awareness of applications and system optimization decision-making, respectively.
-- System profile layer: consists of the feature engineering and two-layer classification model. The feature engineering is used to automatically select service features, and the two-layer classification model is used to learn and classify service models.
-- Interaction system layer: monitors and configures various system resources and executes optimization policies.
-
-
-
-## Supported Features and Service Models
-
-### Supported Features
-
-[Table 1](#table1919220557576) describes the main features supported by A-Tune, feature maturity, and usage suggestions.
-
-**Table 1** Feature maturity
-
-
-
-| Feature | Maturity | Usage Suggestion |
-| --------------------------------------------------------- | -------- | ---------------- |
-| Auto optimization of 15 applications in 11 workload types | Tested | Pilot |
-| User-defined profile and service models | Tested | Pilot |
-| Automatic parameter optimization | Tested | Pilot |
-
-### Supported Service Models
-
-Based on the workload characteristics of applications, A-Tune classifies services into 11 types. For details about the bottleneck of each type and the applications supported by A-Tune, see [Table 2](#table2819164611311).
-
-**Table 2** Supported workload types and applications
-
-
-
-| Service category | Type | Bottleneck | Supported Application |
-| ------------------ | -------------------- | ------------------------------------------------------------ | ----------------------------------- |
-| default | Default type | Low resource usage in terms of cpu, memory, network, and I/O | N/A |
-| webserver | Web application | Bottlenecks of cpu and network | Nginx, Apache Traffic Server |
-| database | Database | Bottlenecks of cpu, memory, and I/O | Mongodb, Mysql, Postgresql, Mariadb |
-| big_data | Big data | Bottlenecks of cpu and memory | Hadoop-hdfs, Hadoop-spark |
-| middleware | Middleware framework | Bottlenecks of cpu and network | Dubbo |
-| in-memory_database | Memory database | Bottlenecks of memory and I/O | Redis |
-| basic-test-suite | Basic test suite | Bottlenecks of cpu and memory | SPECCPU2006, SPECjbb2015 |
-| hpc | Human genome | Bottlenecks of cpu, memory, and I/O | Gatk4 |
-| storage | Storage | Bottlenecks of network, and I/O | Ceph |
-| virtualization | Virtualization | Bottlenecks of cpu, memory, and I/O | Consumer-cloud, Mariadb |
-| docker | Docker | Bottlenecks of cpu, memory, and I/O | Mariadb |
diff --git a/docs/en/server/performance/atune/installation_and_deployment.md b/docs/en/server/performance/atune/installation_and_deployment.md
deleted file mode 100644
index 1b7761607ccd947a1ab69e52c70a211d5ee29c16..0000000000000000000000000000000000000000
--- a/docs/en/server/performance/atune/installation_and_deployment.md
+++ /dev/null
@@ -1,509 +0,0 @@
-# Installation and Deployment
-
-This chapter describes how to install and deploy A-Tune.
-
-## Software and Hardware Requirements
-
-### Hardware Requirement
-
-- Huawei Kunpeng 920 processor
-
-### Software Requirement
-
-- OS: openEuler 22.03
-
-## Environment Preparation
-
-For details about installing an openEuler OS, see the [_openEuler Installation Guide_](../../installation_upgrade/installation/installation_on_servers.md).
-
-## A-Tune Installation
-
-This section describes the installation modes and methods of the A-Tune.
-
-### Installation Modes
-
-A-Tune can be installed in single-node, distributed, and cluster modes.
-
-- Single-node mode
-
- The client and server are installed on the same system.
-
-- Distributed mode
-
- The client and server are installed on different systems.
-
-- Cluster mode
- A cluster consists of a client and more than one servers.
-
-The installation modes are as follows:
-
-
-
-### Installation Procedure
-
-To install the A-Tune, perform the following steps:
-
-1. Mount an openEuler ISO image.
-
- ```shell
- mount openEuler-22.03-LTS-everything-x86_64-dvd.iso /mnt
- ```
-
- > Use the **everything** ISO image.
-
-2. Configure the local Yum source.
-
- ```shell
- vim /etc/yum.repos.d/local.repo
- ```
-
- The configured contents are as follows:
-
- ```conf
- [local]
- name=local
- baseurl=file:///mnt
- gpgcheck=1
- enabled=1
- ```
-
-3. Import the GPG public key of the RPM digital signature to the system.
-
- ```shell
- rpm --import /mnt/RPM-GPG-KEY-openEuler
- ```
-
-4. Install an A-Tune server.
-
- > [!NOTE]NOTE
- > In this step, both the server and client software packages are installed. For the single-node deployment, skip **Step 5**.
-
- ```shell
- yum install atune -y
- yum install atune-engine -y
- ```
-
-5. For a distributed mode, install an A-Tune client on associated server.
-
- ```shell
- yum install atune-client -y
- ```
-
-6. Check whether the installation is successful.
-
- ```shell
- $ rpm -qa | grep atune
- atune-client-xxx
- atune-db-xxx
- atune-xxx
- atune-engine-xxx
- ```
-
- If the preceding information is displayed, the installation is successful.
-
-## A-Tune Deployment
-
-This section describes how to deploy A-Tune.
-
-### Overview
-
-The configuration items in the A-Tune configuration file **/etc/atuned/atuned.cnf** are described as follows:
-
-- A-Tune service startup configuration (modify the parameter values as required).
-
- - **protocol**: Protocol used by the gRPC service. The value can be **unix** or **tcp**. **unix** indicates the local socket communication mode, and **tcp** indicates the socket listening port mode. The default value is **unix**.
- - **address**: Listening IP address of the gRPC service. The default value is **unix socket**. If the gRPC service is deployed in distributed mode, change the value to the listening IP address.
- - **port**: Listening port of the gRPC server. The value ranges from 0 to 65535. If **protocol** is set to **unix**, you do not need to set this parameter.
- - **connect**: IP address list of the nodes where the A-Tune is located when the A-Tune is deployed in a cluster. IP addresses are separated by commas (,).
- - **rest_host**: Listening address of the REST service. The default value is localhost.
- - **rest_port**: Listening port of the REST service. The value ranges from 0 to 65535. The default value is 8383.
- - **engine_host**: IP address for connecting to the A-Tune engine service of the system.
- - **engine_port**: Port for connecting to the A-Tune engine service of the system.
- - **sample_num**: Number of samples collected when the system executes the analysis process. The default value is 20.
- - **interval**: Interval for collecting samples when the system executes the analysis process. The default value is 5s.
- - **grpc_tls**: Indicates whether to enable SSL/TLS certificate verification for the gRPC service. By default, this function is disabled. After grpc_tls is enabled, you need to set the following environment variables before running the **atune-adm** command to communicate with the server:
- - export ATUNE_TLS=yes
- - export ATUNED_CACERT=\
- - export ATUNED_CLIENTCERT=\
- - export ATUNED_CLIENTKEY=\
- - export ATUNED_SERVERCN=server
- - **tlsservercafile**: Path of the gPRC server's CA certificate.
- - **tlsservercertfile**: Path of the gPRC server certificate.
- - **tlsserverkeyfile**: Path of the gPRC server key.
- - **rest_tls**: Indicates whether to enable SSL/TLS certificate verification for the REST service. This function is enabled by default.
- - **tlsrestcacertfile**: Path of the server's CA certificate of the REST service.
- - **tlsrestservercertfile**: Path of the server certificate of the REST service.
- - **tlsrestserverkeyfile**: Indicates the key path of the REST service.
- - **engine_tls**: Indicates whether to enable SSL/TLS certificate verification for the A-Tune engine service. This function is enabled by default..
- - **tlsenginecacertfile**: Path of the client CA certificate of the A-Tune engine service.
- - **tlsengineclientcertfile**: Client certificate path of the A-Tune engine service.
- - **tlsengineclientkeyfile**: Client key path of the A-Tune engine service.
-
-- System information
-
- System is the parameter information required for system optimization. You must modify the parameter information according to the actual situation.
-
- - **disk**: Disk information to be collected during the analysis process or specified disk during disk optimization.
- - **network**: NIC information to be collected during the analysis process or specified NIC during NIC optimization.
- - **user**: User name used for ulimit optimization. Currently, only the user **root** is supported.
-
-- Log information
-
- Change the log level as required. The default log level is info. Log information is recorded in the **/var/log/messages** file.
-
-- Monitor information
-
- Hardware information that is collected by default when the system is started.
-
-- Tuning information
-
- Tuning is the parameter information required for offline tuning.
-
- - **noise**: Evaluation value of Gaussian noise.
- - **sel_feature**: Indicates whether to enable the function of generating the importance ranking of offline tuning parameters. By default, this function is disabled.
-
-#### Example
-
-```conf
-#################################### server ###############################
- # atuned config
- [server]
- # the protocol grpc server running on
- # ranges: unix or tcp
- protocol = unix
-
- # the address that the grpc server to bind to
- # default is unix socket /var/run/atuned/atuned.sock
- # ranges: /var/run/atuned/atuned.sock or ip address
- address = /var/run/atuned/atuned.sock
-
- # the atune nodes in cluster mode, separated by commas
- # it is valid when protocol is tcp
- # connect = ip01,ip02,ip03
-
- # the atuned grpc listening port
- # the port can be set between 0 to 65535 which not be used
- # port = 60001
-
- # the rest service listening port, default is 8383
- # the port can be set between 0 to 65535 which not be used
- rest_host = localhost
- rest_port = 8383
-
- # the tuning optimizer host and port, start by engine.service
- # if engine_host is same as rest_host, two ports cannot be same
- # the port can be set between 0 to 65535 which not be used
- engine_host = localhost
- engine_port = 3838
-
- # when run analysis command, the numbers of collected data.
- # default is 20
- sample_num = 20
-
- # interval for collecting data, default is 5s
- interval = 5
-
- # enable gRPC authentication SSL/TLS
- # default is false
- # grpc_tls = false
- # tlsservercafile = /etc/atuned/grpc_certs/ca.crt
- # tlsservercertfile = /etc/atuned/grpc_certs/server.crt
- # tlsserverkeyfile = /etc/atuned/grpc_certs/server.key
-
- # enable rest server authentication SSL/TLS
- # default is true
- rest_tls = true
- tlsrestcacertfile = /etc/atuned/rest_certs/ca.crt
- tlsrestservercertfile = /etc/atuned/rest_certs/server.crt
- tlsrestserverkeyfile = /etc/atuned/rest_certs/server.key
-
- # enable engine server authentication SSL/TLS
- # default is true
- engine_tls = true
- tlsenginecacertfile = /etc/atuned/engine_certs/ca.crt
- tlsengineclientcertfile = /etc/atuned/engine_certs/client.crt
- tlsengineclientkeyfile = /etc/atuned/engine_certs/client.key
-
-
- #################################### log ###############################
- [log]
- # either "debug", "info", "warn", "error", "critical", default is "info"
- level = info
-
- #################################### monitor ###############################
- [monitor]
- # with the module and format of the MPI, the format is {module}_{purpose}
- # the module is Either "mem", "net", "cpu", "storage"
- # the purpose is "topo"
- module = mem_topo, cpu_topo
-
- #################################### system ###############################
- # you can add arbitrary key-value here, just like key = value
- # you can use the key in the profile
- [system]
- # the disk to be analysis
- disk = sda
-
- # the network to be analysis
- network = enp189s0f0
-
- user = root
-
- #################################### tuning ###############################
- # tuning configs
- [tuning]
- noise = 0.000000001
- sel_feature = false
-```
-
-The configuration items in the configuration file **/etc/atuned/engine.cnf** of the A-Tune engine are described as follows:
-
-- Startup configuration of the A-Tune engine service (modify the parameter values as required).
-
- - **engine_host**: Listening address of the A-Tune engine service. The default value is localhost.
- - **engine_port**: Listening port of the A-Tune engine service. The value ranges from 0 to 65535. The default value is 3838.
- - **engine_tls**: Indicates whether to enable SSL/TLS certificate verification for the A-Tune engine service. This function is enabled by default.
- - **tlsenginecacertfile**: Path of the server CA certificate of the A-Tune engine service.
- - **tlsengineservercertfile**: Path of the server certificate of the A-Tune engine service.
- - **tlsengineserverkeyfile**: Server key path of the A-Tune engine service.
-
-- Log information
-
- Change the log level as required. The default log level is info. Log information is recorded in the **/var/log/messages** file.
-
-#### Example
-
-```conf
-#################################### engine ###############################
- [server]
- # the tuning optimizer host and port, start by engine.service
- # if engine_host is same as rest_host, two ports cannot be same
- # the port can be set between 0 to 65535 which not be used
- engine_host = localhost
- engine_port = 3838
-
- # enable engine server authentication SSL/TLS
- # default is true
- engine_tls = true
- tlsenginecacertfile = /etc/atuned/engine_certs/ca.crt
- tlsengineservercertfile = /etc/atuned/engine_certs/server.crt
- tlsengineserverkeyfile = /etc/atuned/engine_certs/server.key
-
- #################################### log ###############################
- [log]
- # either "debug", "info", "warn", "error", "critical", default is "info"
- level = info
-```
-
-## Starting A-Tune
-
-After A-Tune is installed, you need to configure the A-Tune service before starting it.
-
-- Configure the A-Tune service.
- Modify the network adapter and drive information in the **atuned.cnf** configuration file.
- > Note:
- >
- > If atuned is installed through `make install`, the network adapter and drive information in the configuration file is automatically updated to the default devices on the machine. To collect data from other devices, perform the following steps to configure atuned.
-
- Run the following command to search for the network adapter that needs to be specified for optimization or data collection, and change the value of **network** in the **/etc/atuned/atuned.cnf** file to the specified network adapter:
-
- ```shell
- ip addr
- ```
-
- Run the following command to search for the drive that need to be specified for optimization or data collection, and change the value of **disk** in the **/etc/atuned/atuned.cnf** file to the specified drive:
-
- ```shell
- fdisk -l | grep dev
- ```
-
-- About the certificate:
- The A-Tune engine and client use the gRPC communication protocol. Therefore, you need to configure a certificate to ensure system security. For information security purposes, A-Tune does not provide a certificate generation method. You need to configure a system certificate by yourself.
- If security is not considered, set **rest_tls** and **engine_tls** in the **/etc/atuned/atuned.cnf** file to **false**, set **engine_tls** in the **/etc/atuned/engine.cnf** file to **false**.
- A-Tune is not liable for any consequences incurred if no security certificate is configured.
-
-- Start the atuned service.
-
- ```shell
- systemctl start atuned
- ```
-
-- Query the atuned service status.
-
- ```shell
- systemctl status atuned
- ```
-
- If the following command output is displayed, the service is started successfully:
-
- 
-
-## Starting A-Tune Engine
-
-To use AI functions, you need to start the A-Tune engine service.
-
-- Start the atune-engine service.
-
- ```shell
- systemctl start atune-engine
- ```
-
-- Query the atune-engine service status.
-
- ```shell
- systemctl status atune-engine
- ```
-
- If the following command output is displayed, the service is started successfully:
-
- 
-
-## Distributed Deployment
-
-### Purpose of Distributed Deployment
-
-A-Tune supports distributed deployment to implement distributed architecture and on-demand deployment. The components of A-Tune can be deployed separately. Lightweight component deployment has little impact on services and avoids installing too many dependencies to reduce the system load.
-
-This document describes only a common deployment mode: deploying the client and server on the same node and deploying the engine module on another node. For details about other deployment modes, contact A-Tune developers.
-
-**Deployment relationship**
-
-
-### Configuration File
-
-In distributed deployment mode, you need to configure the write the IP address and port number of the engine in the configuration file so that other components can access the engine component through the IP address.
-
-1. Modify the **/etc/atuned/atuned.cnf** file on the server node.
-
- - Change the values of **engine_host** and **engine_port** in line 34 to the IP address and port number of the engine node. For the deployment in the preceding figure, the values are **engine_host = 192.168.0.1 engine_port = 3838**.
- - Change the values of **rest_tls** and **engine_tls** in lines 49 and 55 to **false**. Otherwise, you need to apply for and configure certificates. You do not need to configure SSL certificates in the test environment. However, you need to configure SSL certificates in the production environment to prevent security risks.
-
-2. Modify the**/etc/atuned/engine.cnf** file on the engine node.
-
- - Change the values of **engine_host** and **engine_port** in lines 17 and 18 to the IP address and port number of the engine node. For the deployment in the preceding figure, the value are **engine_host = 192.168.0.1 engine_port = 3838**.
- - Change the value of **engine_tls** in line 22 to **false**.
-
-3. After modifying the configuration file, restart the service for the modification to take effect.
-
- - Run the `systemctl restart atuned command` on the server node.
- - Run the `systemctl restart atune-engine` command on the engine node.
-
-4. (Optional) Run the `tuning` command in the **A-Tune/examples/tuning/compress** folder.
-
- - For details, see **A-Tune/examples/tuning/compress/README**.
- - Run the `atune-adm tuning --project compress --detail compress_client.yaml` command.
- - This step is to check whether the distributed deployment is successful.
-
-### Precautions
-
-1. This document does not describe how to configure the authentication certificates. You can set **rest_tls** or **engine_tls** in the **atuned.cnf** and **engine.cnf** files to **false** if necessary.
-2. After modifying the configuration file, restart the service. Otherwise, the modification does not take effect.
-3. Do not enable the proxy when using A-Tune.
-4. The **disk** and **network** items of the **\[system]** section in the **atuned.cnf** file need to be modified. For details about how to modify the items, see the [A-Tune User Guide](https://gitee.com/gaoruoshu/A-Tune/blob/master/Documentation/UserGuide/A-Tune%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97.md).
-
-### Example
-
-#### atuned.cnf
-
-```conf
-# ......
-
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.0.1
-engine_port = 3838
-
-# ......
-```
-
-#### engine.cnf
-
-```bash
-[server]
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.0.1
-engine_port = 3838
-```
-
-## Cluster Deployment
-
-### Purpose of Cluster Deployment
-
-To support fast tuning in multi-node scenarios, A-Tune supports dynamic tuning of parameter settings on multiple nodes at the same time. In this way, you do not need to tune each node separately, improving tuning efficiency.
-Cluster deployment mode consists of one master node and several agent nodes. The client and server are deployed on the master node to receive commands and interact with the engine. Other nodes receive instructions from the master node and configure the parameters of the current node.
-
-**Deployment relationship**
- 
-
-In the preceding figure, the client and server are deployed on the node whose IP address is 192.168.0.0. Project files are stored on this node. Other nodes do not contain project files.
-The master node communicates with the agent nodes through TCP. Therefore, you need to modify the configuration file.
-
-### Modifications to atuned.cnf
-
-1. Set the value of **protocol** to **tcp**.
-2. Set the value of **address** to the IP address of the current node.
-3. Set the value of **connect** to the IP addresses of all nodes. The first IP address is the IP address of the master node, and the subsequent IP addresses are the IP addresses of agent nodes. Use commas (,) to separate the IP addresses.
-4. During debugging, you can set **rest_tls** and **engine_tls** to **false**.
-5. Perform the same modification on the **atuned.cnf** files of all the master and agent nodes.
-
-### Precautions
-
-1. The values of **engine_host** and **engine_port** must be consistent in the **engine.cnf** file and the **atuned.cnf** file on the server.
-2. This document does not describe how to configure the authentication certificates. You can set **rest_tls** or **engine_tls** in the **atuned.cnf** and **engine.cnf** files to **false** if necessary.
-3. After modifying the configuration file, restart the service. Otherwise, the modification does not take effect.
-4. Do not enable the proxy when using A-Tune.
-
-### Example
-
-#### atuned.cnf
-
-```conf
-# ......
-
-[server]
-# the protocol grpc server running on
-# ranges: unix or tcp
-protocol = tcp
-
-# the address that the grpc server to bind to
-# default is unix socket /var/run/atuned/atuned.sock
-# ranges: /var/run/atuned/atuned.sock or ip address
-address = 192.168.0.0
-
-# the atune nodes in cluster mode, separated by commas
-# it is valid when protocol is tcp
-connect = 192.168.0.0,192.168.0.1,192.168.0.2,192.168.0.3
-
-# the atuned grpc listening port
-# the port can be set between 0 to 65535 which not be used
-port = 60001
-
-# the rest service listening port, default is 8383
-# the port can be set between 0 to 65535 which not be used
-rest_host = localhost
-rest_port = 8383
-
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.1.1
-engine_port = 3838
-
-# ......
-```
-
-#### engine.cnf
-
-```bash
-[server]
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.1.1
-engine_port = 3838
-```
-
-Note: For details about the **engine.cnf** file, see the configuration file for distributed deployment.
diff --git a/docs/en/server/performance/atune/native_turbo.md b/docs/en/server/performance/atune/native_turbo.md
deleted file mode 100644
index 0abd1b3e503143f89e99faedd06cd0ac17a42110..0000000000000000000000000000000000000000
--- a/docs/en/server/performance/atune/native_turbo.md
+++ /dev/null
@@ -1,54 +0,0 @@
-# Native-Turbo
-
-## Overview
-
-The code segment and data segment of a large program can reach hundreds of MB, and the TLB miss rate of key service processes is high. The size of the kernel page table affects the performance.
-
-To facilitate the use of huge pages, the Native-Turbo feature enables the system to automatically use huge pages when loading programs. Huge pages can be used for code segments and data segments.
-
-## How to Use
-
-1. Enable the feature.
-
- This feature has two levels of switches. `sysctl fs.exec-use-hugetlb` determines whether to enable this feature in the system. (This command can only be run by the **root** user. The value `0` indicates that this feature is disabled, and the value `1` indicates that this feature is enabled. Other values are invalid.)
-
- If not enabled, this feature will not be used even if users set environment variables because the kernel will ignore related processes.
-
- After this feature is enabled, common users can use the environment variable `HUGEPAGE_PROBE` to determine whether to use huge pages for running programs. If the value is `1`, huge pages are used. If the value is not set, huge pages are not used.
-
- ```shell
- sysctl fs.exec-use-hugetlb=1 # The main program uses huge pages.
- export HUGEPAGE_PROBE=1 # The dynamic library uses huge pages.
- ```
-
- You can also configure the environment variable `LD_HUGEPAGE_LIB=1` to force all segments to use huge pages.
-
-2. Mark the segments that need to use huge pages. By default, all segments are marked. `-x` only marks code segments. `-d` clears existing marks.
-
- ```shell
- hugepageedit [-x] [-d] app
- ```
-
- This tool is provided by the glibc-devel package.
-
-3. Run the application.
-
- ./app
-
-## Restrictions
-
-1. The program and dynamic library must be compiled in 2 MB alignment mode by adding the following GCC compilation parameters:
-
- ```shell
- -zcommon-page-size=0x200000 -zmax-page-size=0x200000
- ```
-
-2. Sufficient huge pages must be reserved before use. Otherwise, the program will fail to be executed.
-
- If the cgroup is used, pay attention to the `hugetlb` limit. If the limit is less than the number of required huge pages, the system may break down during running.
-
-3. The size of the process page table is changed to 2 MB. Therefore, the parameters invoked by the system such as `mprotect` must be aligned by 2 MB. Otherwise, the execution will fail.
-
-4. The LibcarePlus hot patch mechanism is not supported.
-
-5. Huge pages cannot be shared among multiple processes because they will consume multiple times of memory.
diff --git a/docs/en/server/performance/atune/usage_instructions.md b/docs/en/server/performance/atune/usage_instructions.md
deleted file mode 100644
index eeb1a37e6ad2f6cb3dd8bdbde7adce3068057095..0000000000000000000000000000000000000000
--- a/docs/en/server/performance/atune/usage_instructions.md
+++ /dev/null
@@ -1,757 +0,0 @@
-# Usage Instructions
-
-You can use functions provided by A-Tune through the CLI client atune-adm. This chapter describes the functions and usage of the A-Tune client.
-
-- [Usage Instructions](#usage-instructions)
- - [Overview](#overview)
- - [Querying Workload Types](#querying-workload-types)
- - [list](#list)
- - [Workload Type Analysis and Auto Optimization](#workload-type-analysis-and-auto-optimization)
- - [analysis](#analysis)
- - [User-defined Model](#user-defined-model)
- - [define](#define)
- - [collection](#collection)
- - [train](#train)
- - [undefine](#undefine)
- - [Querying Profiles](#querying-profiles)
- - [info](#info)
- - [Updating a Profile](#updating-a-profile)
- - [update](#update)
- - [Activating a Profile](#activating-a-profile)
- - [profile](#profile)
- - [Rolling Back Profiles](#rolling-back-profiles)
- - [rollback](#rollback)
- - [Updating Database](#updating-database)
- - [upgrade](#upgrade)
- - [Querying System Information](#querying-system-information)
- - [check](#check)
- - [Automatic Parameter Optimization](#automatic-parameter-optimization)
- - [Tuning](#tuning)
-
-## Overview
-
-- You can run the **atune-adm help/--help/-h** command to query commands supported by atune-adm.
-- The **define**, **update**, **undefine**, **collection**, **train**, and **upgrade**commands do not support remote execution.
-- In the command format, brackets \(\[\]\) indicate that the parameter is optional, and angle brackets \(<\>\) indicate that the parameter is mandatory. The actual parameters prevail.
-
-## Querying Workload Types
-
-### list
-
-#### Function
-
-Query the supported profiles, and the values of Active.
-
-#### Format
-
-**atune-adm list**
-
-#### Example
-
-```shell
-# atune-adm list
-
-Support profiles:
-+------------------------------------------------+-----------+
-| ProfileName | Active |
-+================================================+===========+
-| arm-native-android-container-robox | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-fio | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-lmbench | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-netperf | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-stream | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-unixbench | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-speccpu-speccpu2006 | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-specjbb-specjbb2015 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-hdfs-dfsio-hdd | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-hdfs-dfsio-ssd | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-bayesian | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-kmeans | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql1 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql10 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql2 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql3 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql4 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql5 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql6 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql7 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql8 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql9 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-tersort | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-wordcount | false |
-+------------------------------------------------+-----------+
-| cloud-compute-kvm-host | false |
-+------------------------------------------------+-----------+
-| database-mariadb-2p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| database-mariadb-4p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| database-mongodb-2p-sysbench | false |
-+------------------------------------------------+-----------+
-| database-mysql-2p-sysbench-hdd | false |
-+------------------------------------------------+-----------+
-| database-mysql-2p-sysbench-ssd | false |
-+------------------------------------------------+-----------+
-| database-postgresql-2p-sysbench-hdd | false |
-+------------------------------------------------+-----------+
-| database-postgresql-2p-sysbench-ssd | false |
-+------------------------------------------------+-----------+
-| default-default | false |
-+------------------------------------------------+-----------+
-| docker-mariadb-2p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| docker-mariadb-4p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| hpc-gatk4-human-genome | false |
-+------------------------------------------------+-----------+
-| in-memory-database-redis-redis-benchmark | false |
-+------------------------------------------------+-----------+
-| middleware-dubbo-dubbo-benchmark | false |
-+------------------------------------------------+-----------+
-| storage-ceph-vdbench-hdd | false |
-+------------------------------------------------+-----------+
-| storage-ceph-vdbench-ssd | false |
-+------------------------------------------------+-----------+
-| virtualization-consumer-cloud-olc | false |
-+------------------------------------------------+-----------+
-| virtualization-mariadb-2p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| virtualization-mariadb-4p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| web-apache-traffic-server-spirent-pingpo | false |
-+------------------------------------------------+-----------+
-| web-nginx-http-long-connection | true |
-+------------------------------------------------+-----------+
-| web-nginx-https-short-connection | false |
-+------------------------------------------------+-----------+
-```
-
-> [!NOTE]NOTE
-> If the value of Active is **true**, the profile is activated. In the example, the profile of web-nginx-http-long-connection is activated.
-
-## Workload Type Analysis and Auto Optimization
-
-### analysis
-
-#### Function
-
-Collect real-time statistics from the system to identify and automatically optimize workload types.
-
-#### Format
-
-**atune-adm analysis** \[OPTIONS\]
-
-#### Parameter Description
-
-- OPTIONS
-
-| Parameter | Description |
-| ------------------------ | ---------------------------------------------------------------------------------------------- |
-| --model, -m | New model generated after user self-training |
-| --characterization, -c | Use the default model for application identification and do not perform automatic optimization |
-| --times value, -t value | Time duration for data collection |
-| --script value, -s value | File to be executed |
-
-#### Example
-
-- Use the default model for application identification.
-
- ```shell
- # atune-adm analysis --characterization
- ```
-
-- Use the default model to identify applications and perform automatic tuning.
-
- ```shell
- # atune-adm analysis
- ```
-
-- Use the user-defined training model for recognition.
-
- ```shell
- # atune-adm analysis --model /usr/libexec/atuned/analysis/models/new-model.m
- ```
-
-## User-defined Model
-
-A-Tune allows users to define and learn new models. To define a new model, perform the following steps:
-
-1. Run the **define** command to define a new profile.
-2. Run the **collection** command to collect the system data corresponding to the application.
-3. Run the **train** command to train the model.
-
-### define
-
-#### Function
-
-Add a user-defined application scenarios and the corresponding profile tuning items.
-
-#### Format
-
-**atune-adm define** \ \ \ \
-
-#### Example
-
-Add a profile whose service_type is **test_service**, application_name is **test_app**, scenario_name is **test_scenario**, and tuning item configuration file is **example.conf**.
-
-```shell
-# atune-adm define test_service test_app test_scenario ./example.conf
-```
-
-The **example.conf** file can be written as follows (the following optimization items are optional and are for reference only). You can also run the **atune-adm info** command to view how the existing profile is written.
-
-```ini
- [main]
- # list its parent profile
- [kernel_config]
- # to change the kernel config
- [bios]
- # to change the bios config
- [bootloader.grub2]
- # to change the grub2 config
- [sysfs]
- # to change the /sys/* config
- [systemctl]
- # to change the system service status
- [sysctl]
- # to change the /proc/sys/* config
- [script]
- # the script extension of cpi
- [ulimit]
- # to change the resources limit of user
- [schedule_policy]
- # to change the schedule policy
- [check]
- # check the environment
- [tip]
- # the recommended optimization, which should be performed manunaly
-```
-
-### collection
-
-#### Function
-
-Collect the global resource usage and OS status information during service running, and save the collected information to a CSV output file as the input dataset for model training.
-
-> [!NOTE]NOTE
->
-> - This command depends on the sampling tools such as perf, mpstat, vmstat, iostat, and sar.
-> - Currently, only the Kunpeng 920 CPU is supported. You can run the **dmidecode -t processor** command to check the CPU model.
-
-#### Format
-
-**atune-adm collection**
-
-#### Parameter Description
-
-- OPTIONS
-
-| Parameter | Description |
-| ----------------- | ----------------------------------------------------------------------------------------------------- |
-| --filename, -f | Name of the generated CSV file used for training: *name*-*timestamp*.csv |
-| --output_path, -o | Path for storing the generated CSV file. The absolute path is required. |
-| --disk, -b | Disk used during service running, for example, /dev/sda. |
-| --network, -n | Network port used during service running, for example, eth0. |
-| --app_type, -t | Mark the application type of the service as a label for training. |
-| --duration, -d | Data collection time during service running, in seconds. The default collection time is 1200 seconds. |
-| --interval, -i | Interval for collecting data, in seconds. The default interval is 5 seconds. |
-
-#### Example
-
-```shell
-# atune-adm collection --filename name --interval 5 --duration 1200 --output_path /home/data --disk sda --network eth0 --app_type test_service-test_app-test_scenario
-```
-
-> Note:
->
-> In the example, data is collected every 5 seconds for a duration of 1200 seconds. The collected data is stored as the *name* file in the **/home/data** directory. The application type of the service is defined by the `atune-adm define` command, which is **test_service-test_app-test_scenario** in this example.
-> The data collection interval and duration can be specified using the preceding command options.
-
-### train
-
-#### Function
-
-Use the collected data to train the model. Collect data of at least two application types during training. Otherwise, an error is reported.
-
-#### Format
-
-**atune-adm train**
-
-#### Parameter Description
-
-- OPTIONS
-
- | Parameter | Description |
- | ----------------- | ------------------------------------------------------ |
- | --data_path, -d | Path for storing CSV files required for model training |
- | --output_file, -o | Model generated through training |
-
-#### Example
-
-Use the CSV file in the **data** directory as the training input. The generated model **new-model.m** is stored in the **model** directory.
-
-```shell
-# atune-adm train --data_path /home/data --output_file /usr/libexec/atuned/analysis/models/new-model.m
-```
-
-### undefine
-
-#### Function
-
-Delete a user-defined profile.
-
-#### Format
-
-**atune-adm undefine**
-
-#### Example
-
-Delete the user-defined profile.
-
-```shell
-# atune-adm undefine test_service-test_app-test_scenario
-```
-
-## Querying Profiles
-
-### info
-
-#### Function
-
-View the profile content.
-
-#### Format
-
-**atune-adm info**
-
-#### Example
-
-View the profile content of web-nginx-http-long-connection.
-
-```shell
-# atune-adm info web-nginx-http-long-connection
-
-*** web-nginx-http-long-connection:
-
-#
-# nginx http long connection A-Tune configuration
-#
-[main]
-include = default-default
-
-[kernel_config]
-#TODO CONFIG
-
-[bios]
-#TODO CONFIG
-
-[bootloader.grub2]
-iommu.passthrough = 1
-
-[sysfs]
-#TODO CONFIG
-
-[systemctl]
-sysmonitor = stop
-irqbalance = stop
-
-[sysctl]
-fs.file-max = 6553600
-fs.suid_dumpable = 1
-fs.aio-max-nr = 1048576
-kernel.shmmax = 68719476736
-kernel.shmall = 4294967296
-kernel.shmmni = 4096
-kernel.sem = 250 32000 100 128
-net.ipv4.tcp_tw_reuse = 1
-net.ipv4.tcp_syncookies = 1
-net.ipv4.ip_local_port_range = 1024 65500
-net.ipv4.tcp_max_tw_buckets = 5000
-net.core.somaxconn = 65535
-net.core.netdev_max_backlog = 262144
-net.ipv4.tcp_max_orphans = 262144
-net.ipv4.tcp_max_syn_backlog = 262144
-net.ipv4.tcp_timestamps = 0
-net.ipv4.tcp_synack_retries = 1
-net.ipv4.tcp_syn_retries = 1
-net.ipv4.tcp_fin_timeout = 1
-net.ipv4.tcp_keepalive_time = 60
-net.ipv4.tcp_mem = 362619 483495 725238
-net.ipv4.tcp_rmem = 4096 87380 6291456
-net.ipv4.tcp_wmem = 4096 16384 4194304
-net.core.wmem_default = 8388608
-net.core.rmem_default = 8388608
-net.core.rmem_max = 16777216
-net.core.wmem_max = 16777216
-
-[script]
-prefetch = off
-ethtool = -X {network} hfunc toeplitz
-
-[ulimit]
-{user}.hard.nofile = 102400
-{user}.soft.nofile = 102400
-
-[schedule_policy]
-#TODO CONFIG
-
-[check]
-#TODO CONFIG
-
-[tip]
-SELinux provides extra control and security features to linux kernel. Disabling SELinux will improve the performance but may cause security risks. = kernel
-disable the nginx log = application
-```
-
-## Updating a Profile
-
-You can update the existing profile as required.
-
-### update
-
-#### Function
-
-Update the original tuning items in the existing profile to the content in the **new.conf** file.
-
-#### Format
-
-**atune-adm update**
-
-#### Example
-
-Change the tuning item of the profile named **test_service-test_app-test_scenario** to **new.conf**.
-
-```shell
-# atune-adm update test_service-test_app-test_scenario ./new.conf
-```
-
-## Activating a Profile
-
-### profile
-
-#### Function
-
-Manually activate the profile to make it in the active state.
-
-#### Format
-
-**atune-adm profile**
-
-#### Parameter Description
-
-For details about the profile name, see the query result of the list command.
-
-#### Example
-
-Activate the profile corresponding to the web-nginx-http-long-connection.
-
-```shell
-# atune-adm profile web-nginx-http-long-connection
-```
-
-## Rolling Back Profiles
-
-### rollback
-
-#### Functions
-
-Roll back the current configuration to the initial configuration of the system.
-
-#### Format
-
-**atune-adm rollback**
-
-#### Example
-
-```shell
-# atune-adm rollback
-```
-
-## Updating Database
-
-### upgrade
-
-#### Function
-
-Update the system database.
-
-#### Format
-
-**atune-adm upgrade**
-
-#### Parameter Description
-
-- DB\_FILE
-
- New database file path.
-
-#### Example
-
-The database is updated to **new\_sqlite.db**.
-
-```shell
-# atune-adm upgrade ./new_sqlite.db
-```
-
-## Querying System Information
-
-### check
-
-#### Function
-
-Check the CPU, BIOS, OS, and NIC information.
-
-#### Format
-
-**atune-adm check**
-
-#### Example
-
-```shell
-# atune-adm check
- cpu information:
- cpu:0 version: Kunpeng 920-6426 speed: 2600000000 HZ cores: 64
- cpu:1 version: Kunpeng 920-6426 speed: 2600000000 HZ cores: 64
- system information:
- DMIBIOSVersion: 0.59
- OSRelease: 4.19.36-vhulk1906.3.0.h356.eulerosv2r8.aarch64
- network information:
- name: eth0 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth1 product: HNS GE/10GE/25GE Network Controller
- name: eth2 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth3 product: HNS GE/10GE/25GE Network Controller
- name: eth4 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth5 product: HNS GE/10GE/25GE Network Controller
- name: eth6 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth7 product: HNS GE/10GE/25GE Network Controller
- name: docker0 product:
-```
-
-## Automatic Parameter Optimization
-
-A-Tune provides the automatic search capability with the optimal configuration, saving the trouble of manually configuring parameters and performance evaluation. This greatly improves the search efficiency of optimal configurations.
-
-### Tuning
-
-#### Function
-
-Use the specified project file to search the dynamic space for parameters and find the optimal solution under the current environment configuration.
-
-#### Format
-
-**atune-adm tuning** \[OPTIONS\]
-
-> [!NOTE]NOTE
-Before running the command, ensure that the following conditions are met:
-
-1. The YAML configuration file on the server has been edited and stored in the **/etc/atuned/tuning/** directory of the atuned service.
-2. The YAML configuration file of the client has been edited and stored on the atuned client.
-
-#### Parameter Description
-
-- OPTIONS
-
-| Parameter | Description |
-| ------------- | ----------------------------------------------------------- |
-| --restore, -r | Restores the initial configuration before tuning. |
-| --project, -p | Specifies the project name in the YAML file to be restored. |
-| --restart, -c | Perform tuning based on historical tuning results. |
-| --detail, -d | Print detailed information about the tuning process. |
-
-> [!NOTE]NOTE
-> If this parameter is used, the -p parameter must be followed by a specific project name and the YAML file of the project must be specified.
-
-- **PROJECT\_YAML**: YAML configuration file of the client.
-
-#### Configuration Description
-
-**Table 1** YAML file on the server
-
-| Name | Description | Type | Value Range |
-| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------- | ----------- |
-| project | Project name. | Character string | - |
-| startworkload | Script for starting the service to be optimized. | Character string | - |
-| stopworkload | Script for stopping the service to be optimized. | Character string | - |
-| maxiterations | Maximum number of optimization iterations, which is used to limit the number of iterations on the client. Generally, the more optimization iterations, the better the optimization effect, but the longer the time required. Set this parameter based on the site requirements. | Integer | >10 |
-| object | Parameters to be optimized and related information.
For details about the object configuration items, see Table 2. | | |
-
-**Table 2** Description of object configuration items
-
-| Name | Description | Type | Value Range |
-| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------- | ------------------------------------------------------------------------------- |
-| name | Parameter to be optimized. | Character string | - |
-| desc | Description of parameters to be optimized. | Character string | - |
-| get | Script for querying parameter values. | - | - |
-| set | Script for setting parameter values. | - | - |
-| needrestart | Specifies whether to restart the service for the parameter to take effect. | Enumeration | **true** or **false** |
-| type | Parameter type. Currently, the **discrete** and **continuous** types are supported. | Enumeration | **discrete** or **continuous** |
-| dtype | This parameter is available only when type is set to **discrete**. Currently, **int**, **float** and **string** are supported. | Enumeration | int, float, string |
-| scope | Parameter setting range. This parameter is valid only when type is set to discrete and **dtype** is set to **int** or **float**, or **type** is set to **continuous**. | Integer/Float | The value is user-defined and must be within the valid range of this parameter. |
-| step | Parameter value step, which is used when **dtype** is set to **int** or **float**. | Integer/Float | This value is user-defined. |
-| items | Enumerated value of which the parameter value is not within the scope. This is used when **dtype** is set to **int** or **float**. | Integer/Float | The value is user-defined and must be within the valid range of this parameter. |
-| options | Enumerated value range of the parameter value, which is used when **dtype** is set to **string**. | Character string | The value is user-defined and must be within the valid range of this parameter. |
-
-**Table 3** Description of configuration items of a YAML file on the client
-
-| Name | Description | Type | Value Range |
-| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------- | ------------------------------------------------- |
-| project | Project name, which must be the same as that in the configuration file on the server. | Character string | - |
-| engine | Tuning algorithm. | Character string | "random", "forest", "gbrt", "bayes", "extraTrees" |
-| iterations | Number of optimization iterations. | Integer | ≥ 10 |
-| random_starts | Number of random iterations. | Integer | < iterations |
-| feature_filter_engine | Parameter search algorithm, which is used to select important parameters. This parameter is optional. | Character string | "lhs" |
-| feature_filter_cycle | Parameter search cycles, which is used to select important parameters. This parameter is used together with feature_filter_engine. | Integer | - |
-| feature_filter_iters | Number of iterations for each cycle of parameter search, which is used to select important parameters. This parameter is used together with feature_filter_engine. | Integer | - |
-| split_count | Number of evenly selected parameters in the value range of tuning parameters, which is used to select important parameters. This parameter is used together with feature_filter_engine. | Integer | - |
-| benchmark | Performance test script. | - | - |
-| evaluations | Performance test evaluation index.
For details about the evaluations configuration items, see Table 4. | - | - |
-
-**Table 4** Description of evaluations configuration item
-
-| Name | Description | Type | Value Range |
-| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------- | ---------------------------- |
-| name | Evaluation index name. | Character string | - |
-| get | Script for obtaining performance evaluation results. | - | - |
-| type | Specifies a **positive** or **negative** type of the evaluation result. The value **positive** indicates that the performance value is minimized, and the value **negative** indicates that the performance value is maximized. | Enumeration | **positive** or **negative** |
-| weight | Weight of the index. The value ranges from 0 to 100. | Integer | 0-100 |
-| threshold | Minimum performance requirement of the index. | Integer | User-defined |
-
-#### Example
-
-The following is an example of the YAML file configuration on a server:
-
-```yaml
-project: "compress"
-maxiterations: 500
-startworkload: ""
-stopworkload: ""
-object :
- -
- name : "compressLevel"
- info :
- desc : "The compresslevel parameter is an integer from 1 to 9 controlling the level of compression"
- get : "cat /root/A-Tune/examples/tuning/compress/compress.py | grep 'compressLevel=' | awk -F '=' '{print $2}'"
- set : "sed -i 's/compressLevel=\\s*[0-9]*/compressLevel=$value/g' /root/A-Tune/examples/tuning/compress/compress.py"
- needrestart : "false"
- type : "continuous"
- scope :
- - 1
- - 9
- dtype : "int"
- -
- name : "compressMethod"
- info :
- desc : "The compressMethod parameter is a string controlling the compression method"
- get : "cat /root/A-Tune/examples/tuning/compress/compress.py | grep 'compressMethod=' | awk -F '=' '{print $2}' | sed 's/\"//g'"
- set : "sed -i 's/compressMethod=\\s*[0-9,a-z,\"]*/compressMethod=\"$value\"/g' /root/A-Tune/examples/tuning/compress/compress.py"
- needrestart : "false"
- type : "discrete"
- options :
- - "bz2"
- - "zlib"
- - "gzip"
- dtype : "string"
-```
-
-The following is an example of the YAML file configuration on a client:
-
-```yaml
-project: "compress"
-engine : "gbrt"
-iterations : 20
-random_starts : 10
-
-benchmark : "python3 /root/A-Tune/examples/tuning/compress/compress.py"
-evaluations :
- -
- name: "time"
- info:
- get: "echo '$out' | grep 'time' | awk '{print $3}'"
- type: "positive"
- weight: 20
- -
- name: "compress_ratio"
- info:
- get: "echo '$out' | grep 'compress_ratio' | awk '{print $3}'"
- type: "negative"
- weight: 80
-```
-
-#### Example
-
-- Download test data.
-
- ```shell
- wget http://cs.fit.edu/~mmahoney/compression/enwik8.zip
- ```
-
-- Prepare the tuning environment.
-
- Example of **prepare.sh**:
-
- ```shell
- #!/usr/bin/bash
- if [ "$#" -ne 1 ]; then
- echo "USAGE: $0 the path of enwik8.zip"
- exit 1
- fi
-
- path=$(
- cd "$(dirname "$0")"
- pwd
- )
-
- echo "unzip enwik8.zip"
- unzip "$path"/enwik8.zip
-
- echo "set FILE_PATH to the path of enwik8 in compress.py"
- sed -i "s#compress/enwik8#$path/enwik8#g" "$path"/compress.py
-
- echo "update the client and server yaml files"
- sed -i "s#python3 .*compress.py#python3 $path/compress.py#g" "$path"/compress_client.yaml
- sed -i "s# compress/compress.py# $path/compress.py#g" "$path"/compress_server.yaml
-
- echo "copy the server yaml file to /etc/atuned/tuning/"
- cp "$path"/compress_server.yaml /etc/atuned/tuning/
- ```
-
- Run the script.
-
- ```shell
- sh prepare.sh enwik8.zip
- ```
-
-- Run the `tuning` command to tune the parameters.
-
- ```shell
- atune-adm tuning --project compress --detail compress_client.yaml
- ```
-
-- Restore the configuration before running `tuning`. **compress** indicates the project name in the YAML file.
-
- ```shell
- atune-adm tuning --restore --project compress
- ```
diff --git a/docs/en/tools/community_tools/_toc.yaml b/docs/en/tools/community_tools/_toc.yaml
index d70f68e496d895bf3b3ba2b20f3b8e44da8cc317..cc02d0e0c31d2ea3925ec3a53a928a0218946491 100644
--- a/docs/en/tools/community_tools/_toc.yaml
+++ b/docs/en/tools/community_tools/_toc.yaml
@@ -15,7 +15,9 @@ sections:
path: ./development/gcc
- label: Performance Optimization
sections:
- - href: ../../server/performance/atune/_toc.yaml
+ - href:
+ upstream: https://gitee.com/openeuler/A-Tune/blob/master/docs/en/24.03_LTS_SP2/_toc.yaml
+ path: ./atune
- href:
upstream: https://gitee.com/openeuler/oeAware-manager/blob/master/docs/zh/master/_toc.yaml
path: ./performance/oeaware
diff --git a/docs/zh/server/_toc.yaml b/docs/zh/server/_toc.yaml
index 1872ac49fc2137712b3f5d84b1f890d49ed1d28c..5ebf2b101444635d4ca31c5890107ad3fcee8c9e 100644
--- a/docs/zh/server/_toc.yaml
+++ b/docs/zh/server/_toc.yaml
@@ -83,7 +83,9 @@ sections:
path: ./performance/kae_driver
- label: 系统调优
sections:
- - href: ./performance/atune/_toc.yaml
+ - href:
+ upstream: https://gitee.com/openeuler/A-Tune/blob/master/docs/zh/24.03_LTS_SP2/_toc.yaml
+ path: ./atune
- label: 内存调优
sections:
- href: ./performance/tlbi/_toc.yaml
diff --git a/docs/zh/server/performance/atune/_toc.yaml b/docs/zh/server/performance/atune/_toc.yaml
deleted file mode 100644
index b110c532509bcd6ebb0c304ff0f4d0e4070d7380..0000000000000000000000000000000000000000
--- a/docs/zh/server/performance/atune/_toc.yaml
+++ /dev/null
@@ -1,14 +0,0 @@
-label: A_Tune用户指南
-isManual: true
-description: 利用人工智能技术,实现对 openEuler 系统性能的智能化、自动化调优
-sections:
- - label: 认识A_Tune
- href: ./getting_to_know_a_tune.md
- - label: 安装与部署
- href: ./installation_and_deployment.md
- - label: 使用方法
- href: ./usage_instructions.md
- - label: native_turbo特性
- href: ./native_turbo.md
- - label: 附录
- href: ./appendix.md
diff --git a/docs/zh/server/performance/atune/appendix.md b/docs/zh/server/performance/atune/appendix.md
deleted file mode 100644
index 23a121ab80620eb42bfd88138a68e01ff32fef52..0000000000000000000000000000000000000000
--- a/docs/zh/server/performance/atune/appendix.md
+++ /dev/null
@@ -1,28 +0,0 @@
-# 附录
-
-
-
-- [附录](#附录)
- - [术语和缩略语](#术语和缩略语)
-
-
-
-## 术语和缩略语
-
-**表 1** 术语表
-
-
-术语
- |
-含义
- |
-
-
-
-profile
- |
-优化项集合,最佳的参数配置
- |
-
-
-
diff --git a/docs/zh/server/performance/atune/figures/picture1.png b/docs/zh/server/performance/atune/figures/picture1.png
deleted file mode 100644
index 52d496e95f06ef8636730dbbc1aa84d88aea6a34..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/picture1.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/picture4.png b/docs/zh/server/performance/atune/figures/picture4.png
deleted file mode 100644
index 85d57aa2024615a6f0fbff5a7d2a207941eb3085..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/picture4.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0213178479.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0213178479.png
deleted file mode 100644
index d245d48dc07e2b01734e21ec1952e89fa9269bdb..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0213178479.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0213178480.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0213178480.png
deleted file mode 100644
index a32856aa08e459ed0f51f8fcf4c2f51511c12095..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0213178480.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0214540398.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0214540398.png
deleted file mode 100644
index cea2292307b57854aa629ec102a5bc1b16d244a0..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0214540398.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0227497000.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0227497000.png
deleted file mode 100644
index db9b5ce8b6d211d54ea36930504cca415ddfb8ca..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0227497000.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0227497343.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0227497343.png
deleted file mode 100644
index aecf293846ebd12f15b9a3fb5fdc2618d9d527dc..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0227497343.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0231122163.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0231122163.png
deleted file mode 100644
index 66bf082a6537ad70c84e4e8f07de745f973482b9..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0231122163.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/figures/zh-cn_image_0245342444.png b/docs/zh/server/performance/atune/figures/zh-cn_image_0245342444.png
deleted file mode 100644
index 10f0fceb42c00c80ef49decdc0c480eb04c2ca6d..0000000000000000000000000000000000000000
Binary files a/docs/zh/server/performance/atune/figures/zh-cn_image_0245342444.png and /dev/null differ
diff --git a/docs/zh/server/performance/atune/getting_to_know_a_tune.md b/docs/zh/server/performance/atune/getting_to_know_a_tune.md
deleted file mode 100644
index a1cf757113ef5b31b438df4ab726c59493f48c01..0000000000000000000000000000000000000000
--- a/docs/zh/server/performance/atune/getting_to_know_a_tune.md
+++ /dev/null
@@ -1,97 +0,0 @@
-# 认识A-Tune
-
-
-
-- [认识A-Tune](#认识a-tune)
- - [简介](#简介)
- - [架构](#架构)
- - [支持特性与业务模型](#支持特性与业务模型)
- - [支持特性](#支持特性)
- - [支持业务模型](#支持业务模型)
-
-
-
-## 简介
-
-操作系统作为衔接应用和硬件的基础软件,如何调整系统和应用配置,充分发挥软硬件能力,从而使业务性能达到最优,对用户至关重要。然而,运行在操作系统上的业务类型成百上千,应用形态千差万别,对资源的要求各不相同。当前硬件和基础软件组成的应用环境涉及高达7000多个配置对象,随着业务复杂度和调优对象的增加,调优所需的时间成本呈指数级增长,导致调优效率急剧下降,调优成为了一项极其复杂的工程,给用户带来巨大挑战。
-
-其次,操作系统作为基础设施软件,提供了大量的软硬件管理能力,每种能力适用场景不尽相同,并非对所有的应用场景都通用有益,因此,不同的场景需要开启或关闭不同的能力,组合使用系统提供的各种能力,才能发挥应用程序的最佳性能。
-
-另外,实际业务场景成千上万,计算、网络、存储等硬件配置也层出不穷,实验室无法遍历穷举所有的应用和业务场景,以及不同的硬件组合。
-
-为了应对上述挑战,openEuler推出了A-Tune。
-
-A-Tune是一款基于AI开发的系统性能优化引擎,它利用人工智能技术,对业务场景建立精准的系统画像,感知并推理出业务特征,进而做出智能决策,匹配并推荐最佳的系统参数配置组合,使业务处于最佳运行状态。
-
-
-
-## 架构
-
-A-Tune核心技术架构如下图,主要包括智能决策、系统画像和交互系统三层。
-
-- 智能决策层:包含感知和决策两个子系统,分别完成对应用的智能感知和对系统的调优决策。
-- 系统画像层:主要包括自动特征工程和两层分类模型,自动特征工程用于业务特征的自动选择,两层分类模型用于业务模型的学习和分类。
-- 交互系统层:用于各类系统资源的监控和配置,调优策略执行在本层进行。
-
-
-
-## 支持特性与业务模型
-
-### 支持特性
-
-A-Tune支持的主要特性、特性成熟度以及使用建议请参见[表1](#table1919220557576)。
-
-**表 1** 特性成熟度
-
-
-特性
- |
-成熟度
- |
-使用建议
- |
-
-
-11大类15款应用负载类型自动优化
- |
-已测试
- |
-试用
- |
-
-自定义profile和业务模型
- |
-已测试
- |
-试用
- |
-
-参数自调优
- |
-已测试
- |
-试用
- |
-
-
-
-
-### 支持业务模型
-
-根据应用的负载特征,A-Tune将业务分为11大类,各类型的负载特征和A-Tune支持的应用请参见表2。
-
-**表 2** 支持的业务类型和应用
-
-| 业务大类 | 业务类型 | 瓶颈点 | 支持的应用 | 待规划的应用 |
-| --- | --- | --- | --- | --- |
-| default | 默认类型 | 算力、内存、网络、IO 各维度资源使用率都不高 | N/A | N/A |
-| webserver | web 应用 | 算力瓶颈、网络瓶颈 | Nginx、Apache Traffic Server | N/A |
-| database | 数据库 | 算力瓶颈、内存瓶颈、IO 瓶颈 | Mongodb、Mysql、Postgresql、Mariadb | N/A |
-| big-data | 大数据 | 算力瓶颈、内存瓶颈 | N/A | Hadoop-hdfs、Hadoop-spark |
-| middleware | 中间件框架 | 算力瓶颈、网络瓶颈 | Dubbo | N/A |
-| in-memory-database | 内存数据库 | 内存瓶颈、IO 瓶颈 | Redis | N/A |
-| basic-test-suite | 基础测试套 | 算力瓶颈、内存瓶颈 | SPECCPU2006、SPECjbb2015 | N/A |
-| hpc | 人类基因组 | 算力瓶颈、内存瓶颈、IO 瓶颈 | Gatk4 | N/A |
-| storage | 存储 | 网络瓶颈、IO 瓶颈 | N/A | Ceph |
-| virtualization | 虚拟化 | 算力瓶颈、内存瓶颈、IO 瓶颈 | Consumer-cloud、Mariadb | N/A |
-| docker | 容器 | 算力瓶颈、内存瓶颈、IO 瓶颈 | Mariadb | N/A |
diff --git a/docs/zh/server/performance/atune/installation_and_deployment.md b/docs/zh/server/performance/atune/installation_and_deployment.md
deleted file mode 100644
index 9b27671c04a7f6a42ffb8f1fea44d2042a19a1ec..0000000000000000000000000000000000000000
--- a/docs/zh/server/performance/atune/installation_and_deployment.md
+++ /dev/null
@@ -1,505 +0,0 @@
-# 安装与部署
-
-本章介绍如何安装和部署A-Tune。
-
-## 软硬件要求
-
-### 硬件要求
-
-- 鲲鹏920处理器
-
-### 软件要求
-
-- 操作系统:openEuler 25.03
-
-## 环境准备
-
-- 安装openEuler系统,安装方法参考 [《安装指南》](../../installation_upgrade/installation/installation_on_servers.md)。
-
-- 安装A-Tune需要使用root权限。
-
-## 安装A-Tune
-
-本节介绍A-Tune的安装模式和安装方法。
-
-### 安装模式介绍
-
-A-Tune支持单机模式、分布式模式安装和集群模式安装:
-
-- 单机模式
-
- client和server安装到同一台机器上。
-
-- 分布式模式
-
- client和server分别安装在不同的机器上。
-
-- 集群模式
-
- 由一台client机器和大于一台server机器组成。
-
-三种安装模式的简单图示如下:
-
-
-
-### 安装操作
-
-安装A-Tune的操作步骤如下:
-
-1. 挂载openEuler的iso文件。
-
- ```shell
- # mount openEuler-{version}-everything-x86_64-dvd.iso /mnt
- ```
-
- 请安装everything的iso。
-
-2. 配置本地yum源。
-
- ```shell
- # vim /etc/yum.repos.d/local.repo
- ```
-
- 配置内容如下所示:
-
- ```shell
- [local]
- name=local
- baseurl=file:///mnt
- gpgcheck=1
- enabled=1
- ```
-
-3. 将RPM数字签名的GPG公钥导入系统。
-
- ```shell
- # rpm --import /mnt/RPM-GPG-KEY-openEuler
- ```
-
-4. 安装A-Tune服务端。
-
- > [!NOTE]说明
- > 本步骤会同时安装服务端和客户端软件包,对于单机部署模式,请跳过**步骤5**。
-
- ```shell
- # yum install atune -y
- # yum install atune-engine -y
- ```
-
-5. 若为分布式部署,请安装A-Tune客户端。
-
- ```shell
- # yum install atune-client -y
- ```
-
-6. 验证是否安装成功。命令和回显如下表示安装成功。
-
- ```shell
- # rpm -qa | grep atune
- atune-client-xxx
- atune-db-xxx
- atune-xxx
- atune-engine-xxx
- ```
-
-## 部署A-Tune
-
-本节介绍A-Tune的配置部署。
-
-### 配置介绍
-
-A-Tune配置文件/etc/atuned/atuned.cnf的配置项说明如下:
-
-- A-Tune服务启动配置(可根据需要进行修改)。
-
- - protocol:系统gRPC服务使用的协议,unix或tcp,unix为本地socket通信方式,tcp为socket监听端口方式。默认为unix。
- - address:系统gRPC服务的侦听地址,默认为unix socket,若为分布式部署,需修改为侦听的ip地址。
- - port:系统gRPC服务的侦听端口,范围为0\~65535未使用的端口。如果protocol配置是unix,则不需要配置。
- - connect:若为集群部署时,A-Tune所在节点的ip列表,ip地址以逗号分隔。
- - rest_host:系统rest service的侦听地址,默认为localhost。
- - rest_port:系统rest service的侦听端口,范围为0~65535未使用的端口,默认为8383。
- - engine_host:与系统atune engine service链接的地址。
- - engine_port:与系统atune engine service链接的端口。
- - sample_num:系统执行analysis流程时采集样本的数量,默认为20。
- - interval:系统执行analysis流程时采集样本的间隔时间,默认为5s。
- - grpc_tls:系统gRPC的SSL/TLS证书校验开关,默认不开启。开启grpc_tls后,atune-adm命令在使用前需要设置以下环境变量方可与服务端进行通讯:
- - export ATUNE_TLS=yes
- - export ATUNED_CACERT=\<客户端CA证书路径>
- - export ATUNED_CLIENTCERT=\<客户端证书路径>
- - export ATUNED_CLIENTKEY=\<客户端密钥路径>
- - export ATUNED_SERVERCN=server
- - tlsservercafile:gRPC服务端CA证书路径。
- - tlsservercertfile:gRPC服务端证书路径。
- - tlsserverkeyfile:gRPC服务端密钥路径。
- - rest_tls:系统rest service的SSL/TLS证书校验开关,默认开启。
- - tlsrestcacertfile:系统rest service的服务端CA证书路径。
- - tlsrestservercertfile:系统rest service的服务端证书路径。
- - tlsrestserverkeyfile:系统rest service的服务端密钥路径。
- - engine_tls:系统atune engine service的SSL/TLS证书校验开关,默认开启。
- - tlsenginecacertfile:系统atune engine service的客户端CA证书路径。
- - tlsengineclientcertfile:系统atune engine service的客户端证书路径。
- - tlsengineclientkeyfile:系统atune engine service的客户端密钥路径。
-
-- system信息
-
- system为系统执行相关的优化需要用到的参数信息,必须根据系统实际情况进行修改。
-
- - disk:执行analysis流程时需要采集的对应磁盘的信息或执行磁盘相关优化时需要指定的磁盘。
- - network:执行analysis时需要采集的对应的网卡的信息或执行网卡相关优化时需要指定的网卡。
-
- - user:执行ulimit相关优化时用到的用户名。目前只支持root用户。
-
-- 日志信息
-
- 根据情况修改日志的级别,默认为info级别,日志信息打印在/var/log/messages中。
-
-- monitor信息
-
- 为系统启动时默认采集的系统硬件信息。
-
-- tuning信息
-
- tuning为系统进行离线调优时需要用到的参数信息。
-
- - noise:高斯噪声的评估值。
- - sel_feature:控制离线调优参数重要性排名输出的开关,默认关闭。
-
-### 配置示例
-
-```shell
-#################################### server ###############################
- # atuned config
- [server]
- # the protocol grpc server running on
- # ranges: unix or tcp
- protocol = unix
-
- # the address that the grpc server to bind to
- # default is unix socket /var/run/atuned/atuned.sock
- # ranges: /var/run/atuned/atuned.sock or ip address
- address = /var/run/atuned/atuned.sock
-
- # the atune nodes in cluster mode, separated by commas
- # it is valid when protocol is tcp
- # connect = ip01,ip02,ip03
-
- # the atuned grpc listening port
- # the port can be set between 0 to 65535 which not be used
- # port = 60001
-
- # the rest service listening port, default is 8383
- # the port can be set between 0 to 65535 which not be used
- rest_host = localhost
- rest_port = 8383
-
- # the tuning optimizer host and port, start by engine.service
- # if engine_host is same as rest_host, two ports cannot be same
- # the port can be set between 0 to 65535 which not be used
- engine_host = localhost
- engine_port = 3838
-
- # when run analysis command, the numbers of collected data.
- # default is 20
- sample_num = 20
-
- # interval for collecting data, default is 5s
- interval = 5
-
- # enable gRPC authentication SSL/TLS
- # default is false
- # grpc_tls = false
- # tlsservercafile = /etc/atuned/grpc_certs/ca.crt
- # tlsservercertfile = /etc/atuned/grpc_certs/server.crt
- # tlsserverkeyfile = /etc/atuned/grpc_certs/server.key
-
- # enable rest server authentication SSL/TLS
- # default is true
- rest_tls = true
- tlsrestcacertfile = /etc/atuned/rest_certs/ca.crt
- tlsrestservercertfile = /etc/atuned/rest_certs/server.crt
- tlsrestserverkeyfile = /etc/atuned/rest_certs/server.key
-
- # enable engine server authentication SSL/TLS
- # default is true
- engine_tls = true
- tlsenginecacertfile = /etc/atuned/engine_certs/ca.crt
- tlsengineclientcertfile = /etc/atuned/engine_certs/client.crt
- tlsengineclientkeyfile = /etc/atuned/engine_certs/client.key
-
-
- #################################### log ###############################
- [log]
- # either "debug", "info", "warn", "error", "critical", default is "info"
- level = info
-
- #################################### monitor ###############################
- [monitor]
- # with the module and format of the MPI, the format is {module}_{purpose}
- # the module is Either "mem", "net", "cpu", "storage"
- # the purpose is "topo"
- module = mem_topo, cpu_topo
-
- #################################### system ###############################
- # you can add arbitrary key-value here, just like key = value
- # you can use the key in the profile
- [system]
- # the disk to be analysis
- disk = sda
-
- # the network to be analysis
- network = enp189s0f0
-
- user = root
-
- #################################### tuning ###############################
- # tuning configs
- [tuning]
- noise = 0.000000001
- sel_feature = false
-```
-
-A-Tune engine配置文件/etc/atuned/engine.cnf的配置项说明如下:
-
-- A-Tune engine服务启动配置(可根据需要进行修改)。
- - engine_host:系统atune engine service的侦听地址,默认为localhost。
- - engine_port:系统atune engine service的侦听端口,范围为0~65535未使用的端口,默认为3838。
- - engine_tls:系统atune engine service的SSL/TLS证书校验开关,默认开启。
- - tlsenginecacertfile:系统atune engine service的服务端CA证书路径。
- - tlsengineservercertfile:系统atune engine service的服务端证书路径
- - tlsengineserverkeyfile:系统atune engine service的服务端密钥路径。
-
-- 日志信息
-
- 根据情况修改日志的级别,默认为info级别,日志信息打印在/var/log/messages中。
-
-### 配置示例
-
-```shell
- #################################### engine ###############################
- [server]
- # the tuning optimizer host and port, start by engine.service
- # if engine_host is same as rest_host, two ports cannot be same
- # the port can be set between 0 to 65535 which not be used
- engine_host = localhost
- engine_port = 3838
-
- # enable engine server authentication SSL/TLS
- # default is true
- engine_tls = true
- tlsenginecacertfile = /etc/atuned/engine_certs/ca.crt
- tlsengineservercertfile = /etc/atuned/engine_certs/server.crt
- tlsengineserverkeyfile = /etc/atuned/engine_certs/server.key
-
- #################################### log ###############################
- [log]
- # either "debug", "info", "warn", "error", "critical", default is "info"
- level = info
-```
-
-## 启动A-Tune
-
-A-Tune安装完成后,需要配置A-Tune服务,然后启动A-Tune服务。
-
-- 配置A-Tune服务:
-
- 修改atuned.cnf配置文件中网卡和磁盘的信息
- > 说明:
- >
- > 如果通过'make install'安装了atuned服务,网卡和磁盘已经自动更新为当前机器中的默认设备。如果需要从其他设备收集数据,请按照以下步骤配置 atuned 服务。
-
- 通过以下命令可以查找当前需要采集或者执行网卡相关优化时需要指定的网卡,并修改/etc/atuned/atuned.cnf中的network配置选项为对应的指定网卡。
-
- ```shell
- ip addr
- ```
-
- 通过以下命令可以查找当前需要采集或者执行磁盘相关优化时需要指定的磁盘,并修改/etc/atuned/atuned.cnf中的disk配置选项为对应的指定磁盘。
-
- ```shell
- fdisk -l | grep dev
- ```
-
-- 关于证书:
-
- 因为A-Tune的引擎和客户端使用了grpc通信协议,所以为了系统安全,需要配置证书。因为信息安全的原因,A-Tune不会提供证书生成方法,请用户自行配置系统证书。
- 如果不考虑安全问题,可以将/etc/atuned/atuned.cnf中的rest_tls 和 engine_tls配置选项设置为false,并且将/etc/atuned/engine.cnf中的engine_tls配置选项设为false。
- 如果不配置安全证书导致的一切后果与A-Tune无关。
-
-- 启动atuned服务:
-
- ```shell
- # systemctl start atuned
- ```
-
-- 查询atuned服务状态:
-
- ```shell
- # systemctl status atuned
- ```
-
- 若回显为如下,则服务启动成功。
-
- 
-
-## 启动A-Tune engine
-
-若需要使用AI相关的功能,需要启动A-Tune engine服务才能使用。
-
-- 启动atune-engine服务:
-
- ```shell
- # systemctl start atune-engine
- ```
-
-- 查询atune-engine服务状态:
-
- ```shell
- # systemctl status atune-engine
- ```
-
- 若回显为如下,则服务启动成功。
-
- 
-
-## 分部式部署
-
-### 分部式部署目的
-
-为了实现分布式架构和按需部署的目标,A-Tune支持分部式部署。可以将三个组件分开部署,轻量化组件部署对业务影响小,也避免安装过多依赖软件,减轻系统负担。
-
-部署方式:本文档只介绍常用的一种部署方式:在同一节点部署客户端和服务端,在另一个节点上部署引擎模块。其他的部署方式请咨询A-Tune开发人员。
-
-**部署关系图:**
-
-
-### 配置文件
-
-分部式部署需要修改配置文件,将引擎的ip地址和端口号写入配置文件中,别的组件才能访问该ip地址上的引擎组件。
-
-1. 修改服务端节点上的`/etc/atuned/atuned.cnf`文件:
- - 34行的`engine_host`和`engine_port`修改为引擎节点的ip地址和端口号。如上图,应该修改为`engine_host = 192.168.0.1 engine_port = 3838`。
- - 将49行和55行的 rest_tls 和engine_tls 改为false,否则需要申请和配置证书。在测试环境中可以不用配置ssl证书,但是正式的现网环境需要配置证书,否则会有安全隐患。
-2. 修改引擎节点/etc/atuned/engine.cnf文件:
- - 17行和18行的`engine_host`和`engine_port`修改为引擎节点的ip地址和端口号。如上图,应该修改为`engine_host = 192.168.0.1 engine_port = 3838`。
- - 第22行的engine_tls的值改成false。
-3. 修改完配置文件后需要重启服务,配置才会生效:
- - 服务端节点输入命令:`systemctl restart atuned`。
- - 引擎端节点输入命令:`systemctl restart atune-engine`。
-4. (可选步骤)在`A-Tune/examples/tuning/compress`文件夹下运行tuning命令:
- - 请先参考`A-Tune/examples/tuning/compress/README`的指导进行预处理。
- - 执行`atune-adm tuning --project compress --detail compress_client.yaml`。
- - 本步骤的目的是检验分部式部署是否成功。
-
-### 注意事项
-
-1. 本文档不对认证证书配置方法作详细说明,如有需要也可以将atuned.cnf和engine.cnf中的rest_tls/engine_tls设成false。
-2. 修改完配置文件后需要重启服务,否则修改不会生效。
-3. 注意使用atune服务时不要同时打开代理。
-4. atuned.cnf 文件中的[system]模块的disk和network项需要修改,修改方法见[A-Tune用户指南2.4.1章节](https://gitee.com/gaoruoshu/A-Tune/blob/master/Documentation/UserGuide/A-Tune%E7%94%A8%E6%88%B7%E6%8C%87%E5%8D%97.md),本文不展开描述。
-
-### 举例
-
-#### atuned.cnf
-
-```bash
-# ...前略...
-
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.0.1
-engine_port = 3838
-
-# ...后略...
-```
-
-#### engine.cnf
-
-```bash
-[server]
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.0.1
-engine_port = 3838
-```
-
-## 集群部署
-
-### 集群部署的目的
-
-为了支持多节点场景快速调优,A-Tune支持对多个节点里的参数配置同时进行动态调优,避免用户单独多次对每个节点进行调优,从而提升调优效率。
-集群部署的方式:分为一个主节点和若干个从节点。在主节点部署客户端和服务端,负责接受命令和引擎交互。其他节点接受主节点的指令,对当前节点的参数进行配置。
-
-**部署关系图:**
- 
-
-上图中客户端和服务端部署在ip为192.168.0.0的节点上,项目文件存放在该节点上,其他节点不用放置项目文件。
-主节点和从节点之间通过tcp协议通信,所以需要修改配置文件。
-
-### atuned.cnf配置文件修改
-
-1. protocol 值设置为tcp。
-2. address设置为当前节点的ip地址。
-3. connect设置为所有节点的ip地址,第一个为主节点,其余为从节点ip,中间用逗号隔开。
-4. 在调试时,可以设置rest_tls 和engine_tls 为false。
-5. 所有的主从节点的atuned.cnf都按照上方描述修改。
-
-### 注意事项
-
-1. 将engine.cnf中的`engine_host`和`engine_port`设置为服务端atuned.cnf中`engine_host`和`engine_port`一样的ip和端口号。
-2. 本文档不对认证证书配置方法作详细说明,如有需要也可以将atuned.cnf和engine.cnf中的rest_tls和engine_tls设置为false。
-3. 修改完配置文件后需要重启服务,否则修改不会生效。
-4. 注意使用atune服务时不要同时打开代理。
-
-### 举例
-
-#### atuned.cnf
-
-```bash
-# ...前略...
-
-[server]
-# the protocol grpc server running on
-# ranges: unix or tcp
-protocol = tcp
-
-# the address that the grpc server to bind to
-# default is unix socket /var/run/atuned/atuned.sock
-# ranges: /var/run/atuned/atuned.sock or ip address
-address = 192.168.0.0
-
-# the atune nodes in cluster mode, separated by commas
-# it is valid when protocol is tcp
-connect = 192.168.0.0,192.168.0.1,192.168.0.2,192.168.0.3
-
-# the atuned grpc listening port
-# the port can be set between 0 to 65535 which not be used
-port = 60001
-
-# the rest service listening port, default is 8383
-# the port can be set between 0 to 65535 which not be used
-rest_host = localhost
-rest_port = 8383
-
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.1.1
-engine_port = 3838
-
-# ...后略...
-```
-
-#### engine.cnf
-
-```bash
-[server]
-# the tuning optimizer host and port, start by engine.service
-# if engine_host is same as rest_host, two ports cannot be same
-# the port can be set between 0 to 65535 which not be used
-engine_host = 192.168.1.1
-engine_port = 3838
-```
-
-**备注:** engine.cnf参考分部式部署的配置文件。
diff --git a/docs/zh/server/performance/atune/native_turbo.md b/docs/zh/server/performance/atune/native_turbo.md
deleted file mode 100644
index 81cede9a4b7f6545466ddeda45e2fed2eee52f71..0000000000000000000000000000000000000000
--- a/docs/zh/server/performance/atune/native_turbo.md
+++ /dev/null
@@ -1,54 +0,0 @@
-# native-turbo特性
-
-## 简介
-
-大型程序的代码段、数据段可达数百MB,关键业务流程TLB miss较高。内核页表大小对性能有影响。
-
-为了方便用户使用大页,native-turbo特性实现了加载程序时自动使用大页的功能,可以针对代码段、数据段使用大页。
-
-## 使用方法
-
-1. 打开特性开关
-
- 该特性有两级开关,sysctl fs.exec-use-hugetlb用于控制本系统是否打开该特性(由root用户控制,0不打开,1打开,其他值非法)。
-
- 如果不打开该开关,即使用户设置了环境变量也不会使用该特性,内核会忽略相关流程。
-
- 系统打开该特性后,普通用户可以通过环境变量HUGEPAGE_PROBE自行决定运行的程序是否需要使用大页(1使用,不设置或其他值不使用)。
-
- ```shell
- sysctl fs.exec-use-hugetlb=1 #主程序使用大页
- export HUGEPAGE_PROBE=1 #动态库使用大页
- ```
-
- 动态库大页也可以使用LD_HUGEPAGE_LIB=1环境变量强制所有段使用大页。
-
-2. 标记需要使用大页的段,默认标记所有段,-x表示仅代码段,-d清除已有标记。
-
- ```shell
- hugepageedit [-x] [-d] app
- ```
-
- 该工具由glibc-devel包提供。
-
-3. 启动程序
-
- ./app
-
-## 约束限制
-
-1. 程序与动态库必须按照2M对齐编译,可通过添加如下gcc编译参数实现:
-
- ```shell
- -zcommon-page-size=0x200000 -zmax-page-size=0x200000
- ```
-
-2. 使用前需要预留足够的大页,否则程序会执行失败。
-
- 如果使用cgroup,请注意hugetlb的限制,如果限制小于所需大页数量,可能导致运行时崩溃。
-
-3. 由于进程页表改为2M,mprotect等系统调用的参数需要按2M对齐,否则会执行失败。
-
-4. 不支持libcareplus热补丁机制。
-
-5. 多个进程间无法共享大页,会消耗多倍内存。
diff --git a/docs/zh/server/performance/atune/usage_instructions.md b/docs/zh/server/performance/atune/usage_instructions.md
deleted file mode 100644
index 5670a5596ac7e4307144e1345ba518ff1272eb5c..0000000000000000000000000000000000000000
--- a/docs/zh/server/performance/atune/usage_instructions.md
+++ /dev/null
@@ -1,730 +0,0 @@
-# 使用方法
-
-用户可以通过命令行客户端atune-adm使用A-Tune提供的功能。本章介绍A-Tune客户端包含的功能和使用方法。
-
-## 总体说明
-
-- 使用A-Tune需要使用root权限。
-- atune-adm支持的命令可以通过 **atune-adm help/--help/-h** 查询。
-- define、update、undefine、collection、train、upgrade不支持远程执行。
-- 命令格式中,\[ \] 表示参数可选,<\> 表示参数必选,具体参数由实际情况确定。
-
-## 查询负载类型
-
-### list
-
-### 功能描述
-
-查询系统当前支持的profile,以及当前处于active状态的profile。
-
-### 命令格式
-
-**atune-adm list**
-
-### 使用示例
-
-```sh
-# atune-adm list
-
-Support profiles:
-+------------------------------------------------+-----------+
-| ProfileName | Active |
-+================================================+===========+
-| arm-native-android-container-robox | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-fio | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-lmbench | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-netperf | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-stream | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-euleros-baseline-unixbench | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-speccpu-speccpu2006 | false |
-+------------------------------------------------+-----------+
-| basic-test-suite-specjbb-specjbb2015 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-hdfs-dfsio-hdd | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-hdfs-dfsio-ssd | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-bayesian | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-kmeans | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql1 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql10 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql2 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql3 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql4 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql5 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql6 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql7 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql8 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-sql9 | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-tersort | false |
-+------------------------------------------------+-----------+
-| big-data-hadoop-spark-wordcount | false |
-+------------------------------------------------+-----------+
-| cloud-compute-kvm-host | false |
-+------------------------------------------------+-----------+
-| database-mariadb-2p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| database-mariadb-4p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| database-mongodb-2p-sysbench | false |
-+------------------------------------------------+-----------+
-| database-mysql-2p-sysbench-hdd | false |
-+------------------------------------------------+-----------+
-| database-mysql-2p-sysbench-ssd | false |
-+------------------------------------------------+-----------+
-| database-postgresql-2p-sysbench-hdd | false |
-+------------------------------------------------+-----------+
-| database-postgresql-2p-sysbench-ssd | false |
-+------------------------------------------------+-----------+
-| default-default | false |
-+------------------------------------------------+-----------+
-| docker-mariadb-2p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| docker-mariadb-4p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| hpc-gatk4-human-genome | false |
-+------------------------------------------------+-----------+
-| in-memory-database-redis-redis-benchmark | false |
-+------------------------------------------------+-----------+
-| middleware-dubbo-dubbo-benchmark | false |
-+------------------------------------------------+-----------+
-| storage-ceph-vdbench-hdd | false |
-+------------------------------------------------+-----------+
-| storage-ceph-vdbench-ssd | false |
-+------------------------------------------------+-----------+
-| virtualization-consumer-cloud-olc | false |
-+------------------------------------------------+-----------+
-| virtualization-mariadb-2p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| virtualization-mariadb-4p-tpcc-c3 | false |
-+------------------------------------------------+-----------+
-| web-apache-traffic-server-spirent-pingpo | false |
-+------------------------------------------------+-----------+
-| web-nginx-http-long-connection | true |
-+------------------------------------------------+-----------+
-| web-nginx-https-short-connection | false |
-+------------------------------------------------+-----------+
-
-```
-
-> [!NOTE]说明
-> Active为true表示当前激活的profile,示例表示当前激活的profile是web-nginx-http-long-connection。
-
-## 分析负载类型并自优化
-
-### analysis
-
-### 功能描述
-
-采集系统的实时统计数据进行负载类型识别,并进行自动优化。
-
-### 命令格式
-
-**atune-adm analysis** \[OPTIONS\]
-
-### 参数说明
-
-- OPTIONS
-
-| 参数
| 描述
|
-|----------------------------------|-------------------------------|
-| --model, -m
| 用户自训练产生的新模型
|
-| --characterization, -c
| 使用默认的模型进行应用识别,不进行自动优化
|
-| --times value, -t value
| 指定收集数据的时长
|
-| --script value, -s value
| 指定需要运行的文件
|
-
-### 使用示例
-
-- 使用默认的模型进行应用识别
-
- ```sh
- # atune-adm analysis --characterization
- ```
-
-- 使用默认的模型进行应用识别,并进行自动优化
-
- ```sh
- # atune-adm analysis
- ```
-
-- 使用自训练的模型进行应用识别
-
- ```sh
- # atune-adm analysis --model /usr/libexec/atuned/analysis/models/new-model.m
- ```
-
-## 自定义模型
-
-A-Tune支持用户定义并学习新模型。定义新模型的操作流程如下:
-
-1. 用define命令定义一个新应用的profile
-2. 用collection命令收集应用对应的系统数据
-3. 用train命令训练得到模型
-
-### define
-
-### 功能描述
-
-添加用户自定义的应用场景,及对应的profile优化项。
-
-### 命令格式
-
-`atune-adm define `
-
-### 使用示例
-
-新增一个profile,service_type的名称为test_service,application_name的名称为test_app,scenario_name的名称为test_scenario,优化项的配置文件为example.conf。
-
-```sh
-# atune-adm define test_service test_app test_scenario ./example.conf
-```
-
-example.conf 可以参考如下方式书写(以下各优化项非必填,仅供参考),也可通过**atune-adm info**查看已有的profile是如何书写的。
-
-```Conf
- [main]
- # list its parent profile
- [kernel_config]
- # to change the kernel config
- [bios]
- # to change the bios config
- [bootloader.grub2]
- # to change the grub2 config
- [sysfs]
- # to change the /sys/* config
- [systemctl]
- # to change the system service status
- [sysctl]
- # to change the /proc/sys/* config
- [script]
- # the script extension of cpi
- [ulimit]
- # to change the resources limit of user
- [schedule_policy]
- # to change the schedule policy
- [check]
- # check the environment
- [tip]
- # the recommended optimization, which should be performed manunaly
-```
-
-### collection
-
-### 功能描述
-
-采集业务运行时系统的全局资源使用情况以及OS的各项状态信息,并将收集的结果保存到csv格式的输出文件中,作为模型训练的输入数据集。
-
-> [!NOTE]说明
-> 本命令依赖采样工具perf,mpstat,vmstat,iostat,sar。
-> CPU型号目前仅支持鲲鹏920,可通过dmidecode -t processor检查CPU型号。
-
-### 命令格式
-
-**atune-adm collection**
-
-### 参数说明
-
-- OPTIONS
-
-| 参数
| 描述
|
-|---------------------------|--------------------------------------|
-| --filename, -f
| 生成的用于训练的csv文件名:名称-时间戳.csv
|
-| --output_path, -o
| 生成的csv文件的存放路径,需提供绝对路径
|
-| --disk, -b
| 业务运行时实际使用的磁盘,如/dev/sda
|
-| --network, -n
| 业务运行时使用的网络接口,如eth0
|
-| --app_type, -t
| 标记业务的应用类型,作为训练时使用的标签
|
-| --duration, -d
| 业务运行时采集数据的时间,单位秒,默认采集时间1200秒
|
-| --interval,-i
| 采集数据的时间间隔,单位秒,默认采集间隔5秒
|
-
-### 使用示例
-
-```sh
-# atune-adm collection --filename name --interval 5 --duration 1200 --output_path /home/data --disk sda --network eth0 --app_type test_service-test_app-test_scenario
-```
-
-> 说明:
->
-> 实例中定义了每隔5秒收集一次数据,一共收集1200秒;采集后的数据存放在/home/data目录下名称为name的文件中,业务的应用类型是通过atune-adm define指定的业务类型,这里为test_service-test_app-test_scenario
-> 采集间隔和采集时间都可以通过上述选项指定时长。
->
-### train
-
-### 功能描述
-
-使用采集的数据进行模型的训练。训练时至少采集两种应用类型的数据,否则训练会出错。
-
-### 命令格式
-
-**atune-adm train**
-
-### 参数说明
-
-- OPTIONS
-
-| 参数
| 描述
|
-|---------------------------|---------------------------|
-| --data_path, -d
| 存放模型训练所需的csv文件的目录
|
-| --output_file, -o
| 训练生成的新模型
|
-
-### 使用示例
-
-使用data目录下的csv文件作为训练输入,生成的新模型new-model.m存放在model目录下。
-
-```shell
-# atune-adm train --data_path /home/data --output_file /usr/libexec/atuned/analysis/models/new-model.m
-```
-
-### undefine
-
-### 功能描述
-
-删除用户自定义的profile。
-
-### 命令格式
-
-**atune-adm undefine**
-
-### 使用示例
-
-删除自定义的profile。
-
-```shell
-# atune-adm undefine test_service-test_app-test_scenario
-```
-
-## 查询profile
-
-### info
-
-### 功能描述
-
-查看对应的profile内容。
-
-### 命令格式
-
-**atune-adm info**
-
-### 使用示例
-
-查看web-nginx-http-long-connection的profile内容:
-
-```shell
-# atune-adm info web-nginx-http-long-connection
-
-*** web-nginx-http-long-connection:
-
-#
-# nginx http long connection A-Tune configuration
-#
-[main]
-include = default-default
-
-[kernel_config]
-#TODO CONFIG
-
-[bios]
-#TODO CONFIG
-
-[bootloader.grub2]
-iommu.passthrough = 1
-
-[sysfs]
-#TODO CONFIG
-
-[systemctl]
-sysmonitor = stop
-irqbalance = stop
-
-[sysctl]
-fs.file-max = 6553600
-fs.suid_dumpable = 1
-fs.aio-max-nr = 1048576
-kernel.shmmax = 68719476736
-kernel.shmall = 4294967296
-kernel.shmmni = 4096
-kernel.sem = 250 32000 100 128
-net.ipv4.tcp_tw_reuse = 1
-net.ipv4.tcp_syncookies = 1
-net.ipv4.ip_local_port_range = 1024 65500
-net.ipv4.tcp_max_tw_buckets = 5000
-net.core.somaxconn = 65535
-net.core.netdev_max_backlog = 262144
-net.ipv4.tcp_max_orphans = 262144
-net.ipv4.tcp_max_syn_backlog = 262144
-net.ipv4.tcp_timestamps = 0
-net.ipv4.tcp_synack_retries = 1
-net.ipv4.tcp_syn_retries = 1
-net.ipv4.tcp_fin_timeout = 1
-net.ipv4.tcp_keepalive_time = 60
-net.ipv4.tcp_mem = 362619 483495 725238
-net.ipv4.tcp_rmem = 4096 87380 6291456
-net.ipv4.tcp_wmem = 4096 16384 4194304
-net.core.wmem_default = 8388608
-net.core.rmem_default = 8388608
-net.core.rmem_max = 16777216
-net.core.wmem_max = 16777216
-
-[script]
-prefetch = off
-ethtool = -X {network} hfunc toeplitz
-
-[ulimit]
-{user}.hard.nofile = 102400
-{user}.soft.nofile = 102400
-
-[schedule_policy]
-#TODO CONFIG
-
-[check]
-#TODO CONFIG
-
-[tip]
-SELinux provides extra control and security features to linux kernel. Disabling SELinux will improve the performance but may cause security risks. = kernel
-disable the nginx log = application
-```
-
-## 更新profile
-
-用户根据需要更新已有profile。
-
-### update
-
-### 功能描述
-
-将已有profile中原来的优化项更新为new.conf中的内容。
-
-### 命令格式
-
-**atune-adm update**
-
-### 使用示例
-
-更新名为test_service-test_app-test_scenario的profile优化项为new.conf。
-
-```shell
-# atune-adm update test_service-test_app-test_scenario ./new.conf
-```
-
-## 激活profile
-
-### profile
-
-### 功能描述
-
-手动激活profile,使其处于active状态。
-
-### 命令格式
-
-**atune-adm profile**
-
-### 参数说明
-
-profile名参考list命令查询结果。
-
-### 使用示例
-
-激活web-nginx-http-long-connection对应的profile配置。
-
-```sh
-# atune-adm profile web-nginx-http-long-connection
-```
-
-## 回滚profile
-
-### rollback
-
-### 功能描述
-
-回退当前的配置到系统的初始配置。
-
-### 命令格式
-
-**atune-adm rollback**
-
-### 使用示例
-
-```sh
-# atune-adm rollback
-```
-
-## 更新数据库
-
-### upgrade
-
-### 功能描述
-
-更新系统的数据库。
-
-### 命令格式
-
-**atune-adm upgrade**
-
-### 参数说明
-
-- DB\_FILE
-
- 新的数据库文件路径
-
-### 使用示例
-
-数据库更新为new\_sqlite.db。
-
-```sh
-# atune-adm upgrade ./new_sqlite.db
-```
-
-## 系统信息查询
-
-### check
-
-### 功能描述
-
-检查系统当前的cpu、bios、os、网卡等信息。
-
-### 命令格式
-
-**atune-adm check**
-
-### 使用示例
-
-```sh
-# atune-adm check
- cpu information:
- cpu:0 version: Kunpeng 920-6426 speed: 2600000000 HZ cores: 64
- cpu:1 version: Kunpeng 920-6426 speed: 2600000000 HZ cores: 64
- system information:
- DMIBIOSVersion: 0.59
- OSRelease: 4.19.36-vhulk1906.3.0.h356.eulerosv2r8.aarch64
- network information:
- name: eth0 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth1 product: HNS GE/10GE/25GE Network Controller
- name: eth2 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth3 product: HNS GE/10GE/25GE Network Controller
- name: eth4 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth5 product: HNS GE/10GE/25GE Network Controller
- name: eth6 product: HNS GE/10GE/25GE RDMA Network Controller
- name: eth7 product: HNS GE/10GE/25GE Network Controller
- name: docker0 product:
-```
-
-## 参数自调优
-
-A-Tune提供了最佳配置的自动搜索能力,免去人工反复做参数调整、性能评价的调优过程,极大地提升最优配置的搜寻效率。
-
-### tuning
-
-### 功能描述
-
-使用指定的项目文件对参数进行动态空间的搜索,找到当前环境配置下的最优解。
-
-### 命令格式
-
-> [!NOTE]说明
-> 在运行命令前,需要满足如下条件:
->(1)服务端的yaml配置文件已经编辑完成并放置于atuned服务下的**/etc/atuned/tuning/**目录中。
->(2)客户端的yaml配置文件已经编辑完成并放置于atuned客户端任意目录下。
-
-**atune-adm tuning** \[OPTIONS\]
-
-### 参数说明
-
-- OPTIONS
-
-| 参数
| 描述
|
-|-----------------------|-----------------------------|
-| --restore, -r
| 恢复tuning优化前的初始配置
|
-| --project, -p
| 指定需要恢复的yaml文件中的项目名称
|
-| --restart, -c
| 基于历史调优结果进行调优
|
-| --detail, -d
| 打印tuning过程的详细信息
|
-
-> [!NOTE]说明
-> 当使用参数时,-p参数后需要跟具体的项目名称且必须指定该项目yaml文件。
-
-- PROJECT\_YAML:客户端yaml配置文件。
-
-### 配置说明
-
-**表 1** 服务端yaml文件
-
-| 配置名称
| 配置说明
| 参数类型
| 取值范围
|
-|-------------------|---------------------------------------------------------------------------|----------|------------|
-| project
| 项目名称。
| 字符串
| -
|
-| startworkload
| 待调优服务的启动脚本。
| 字符串
| -
|
-| stopworkload
| 待调优服务的停止脚本。
| 字符串
| -
|
-| maxiterations
| 最大调优迭代次数,用于限制客户端的迭代次数。一般来说,调优迭代次数越多,优化效果越好,但所需时间越长。用户必须根据实际的业务场景进行配置。
| 整型
| >10
|
-| object
| 需要调节的参数项及信息。
object 配置项请参见表2。
| -
| -
|
-
-**表 2** object项配置说明
-
-| 配置名称
| 配置说明
| 参数类型
| 取值范围
|
-|-----------------|-----------------------------------------------------------------|------------|------------------------------|
-| name
| 待调参数名称
| 字符串
| -
|
-| desc
| 待调参数描述
| 字符串
| -
|
-| get
| 查询参数值的脚本
| -
| -
|
-| set
| 设置参数值的脚本
| -
| -
|
-| needrestart
| 参数生效是否需要重启业务
| 枚举
| "true", "false"
|
-| type
| 参数的类型,目前支持discrete, continuous两种类型,对应离散型、连续型参数
| 枚举
| "discrete", "continuous"
|
-| dtype
| 该参数仅在type为discrete类型时配置,目前支持int, float, string类型
| 枚举
| int, float, string
|
-| scope
| 参数设置范围,仅在type为discrete且dtype为int或float时或者type为continuous时生效
| 整型/浮点型
| 用户自定义,取值在该参数的合法范围
|
-| step
| 参数值步长,dtype为int或float时使用
| 整型/浮点型
| 用户自定义
|
-| items
| 参数值在scope定义范围之外的枚举值,dtype为int或float时使用
| 整型/浮点型
| 用户自定义,取值在该参数的合法范围
|
-| options
| 参数值的枚举范围,dtype为string时使用
| 字符串
| 用户自定义,取值在该参数的合法范围
|
-
-**表 3** 客户端yaml文件配置说明
-
-| 配置名称
| 配置说明
| 参数类型
| 取值范围
|
-|---------------------------|--------------------------------------------------------------|----------|-------------------------------------------------------|
-| project
| 项目名称,需要与服务端对应配置文件中的project匹配
| 字符串
| -
|
-| engine
| 调优算法
| 字符串
| "random", "forest", "gbrt", "bayes", "extraTrees"
|
-| iterations
| 调优迭代次数
| 整型
| >=10
|
-| random_starts
| 随机迭代次数
| 整型
| <iterations
|
-| feature_filter_engine
| 参数搜索算法,用于重要参数选择,该参数可选
| 字符串
| "lhs"
|
-| feature_filter_cycle
| 参数搜索轮数,用于重要参数选择,该参数配合feature_filter_engine使用
| 整型
| -
|
-| feature_filter_iters
| 每轮参数搜索的迭代次数,用于重要参数选择,该参数配合feature_filter_engine使用
| 整型
| -
|
-| split_count
| 调优参数取值范围中均匀选取的参数个数,用于重要参数选择,该参数配合feature_filter_engine使用
| 整型
| -
|
-| benchmark
| 性能测试脚本
| -
| -
|
-| evaluations
| 性能测试评估指标
evaluations 配置项请参见表4
| -
| -
|
-
-**表 4** evaluations项配置说明
-
-| 配置名称
| 配置说明
| 参数类型
| 取值范围
|
-|---------------|---------------------------------------------------|----------|---------------------------|
-| name
| 评价指标名称
| 字符串
| -
|
-| get
| 获取性能评估结果的脚本
| -
| -
|
-| type
| 评估结果的正负类型,positive代表最小化性能值,negative代表最大化对应性能值
| 枚举
| "positive","negative"
|
-| weight
| 该指标的权重百分比,0-100
| 整型
| 0-100
|
-| threshold
| 该指标的最低性能要求
| 整型
| 用户指定
|
-
-### 配置示例
-
-服务端yaml文件配置示例:
-
-```Conf
-project: "compress"
-maxiterations: 500
-startworkload: ""
-stopworkload: ""
-object :
- -
- name : "compressLevel"
- info :
- desc : "The compresslevel parameter is an integer from 1 to 9 controlling the level of compression"
- get : "cat /root/A-Tune/examples/tuning/compress/compress.py | grep 'compressLevel=' | awk -F '=' '{print $2}'"
- set : "sed -i 's/compressLevel=\\s*[0-9]*/compressLevel=$value/g' /root/A-Tune/examples/tuning/compress/compress.py"
- needrestart : "false"
- type : "continuous"
- scope :
- - 1
- - 9
- dtype : "int"
- -
- name : "compressMethod"
- info :
- desc : "The compressMethod parameter is a string controlling the compression method"
- get : "cat /root/A-Tune/examples/tuning/compress/compress.py | grep 'compressMethod=' | awk -F '=' '{print $2}' | sed 's/\"//g'"
- set : "sed -i 's/compressMethod=\\s*[0-9,a-z,\"]*/compressMethod=\"$value\"/g' /root/A-Tune/examples/tuning/compress/compress.py"
- needrestart : "false"
- type : "discrete"
- options :
- - "bz2"
- - "zlib"
- - "gzip"
- dtype : "string"
-```
-
-客户端yaml文件配置示例:
-
-```yaml
-project: "compress"
-engine : "gbrt"
-iterations : 20
-random_starts : 10
-
-benchmark : "python3 /root/A-Tune/examples/tuning/compress/compress.py"
-evaluations :
- -
- name: "time"
- info:
- get: "echo '$out' | grep 'time' | awk '{print $3}'"
- type: "positive"
- weight: 20
- -
- name: "compress_ratio"
- info:
- get: "echo '$out' | grep 'compress_ratio' | awk '{print $3}'"
- type: "negative"
- weight: 80
-```
-
-### 使用示例
-
-- 下载测试数据
-
- ```sh
- wget http://cs.fit.edu/~mmahoney/compression/enwik8.zip
- ```
-
-- 准备调优环境
- prepare.sh文件示例:
-
- ```sh
- #!/usr/bin/bash
- if [ "$#" -ne 1 ]; then
- echo "USAGE: $0 the path of enwik8.zip"
- exit 1
- fi
-
- path=$(
- cd "$(dirname "$0")"
- pwd
- )
-
- echo "unzip enwik8.zip"
- unzip "$path"/enwik8.zip
-
- echo "set FILE_PATH to the path of enwik8 in compress.py"
- sed -i "s#compress/enwik8#$path/enwik8#g" "$path"/compress.py
-
- echo "update the client and server yaml files"
- sed -i "s#python3 .*compress.py#python3 $path/compress.py#g" "$path"/compress_client.yaml
- sed -i "s# compress/compress.py# $path/compress.py#g" "$path"/compress_server.yaml
-
- echo "copy the server yaml file to /etc/atuned/tuning/"
- cp "$path"/compress_server.yaml /etc/atuned/tuning/
- ```
-
- 运行脚本:
-
- ```sh
- sh prepare.sh enwik8.zip
- ```
-
-- 进行tuning调优
-
- ```sh
- atune-adm tuning --project compress --detail compress_client.yaml
- ```
-
-- 恢复tuning调优前的初始配置,compress为yaml文件中的项目名称
-
- ```sh
- atune-adm tuning --restore --project compress
- ```
diff --git a/docs/zh/tools/community_tools/_toc.yaml b/docs/zh/tools/community_tools/_toc.yaml
index ac99dd21b8f314af900f7ea9de902b5cece2c00e..f80914dd5cec3cb4bc1234e57dbf7b5741ef5af3 100644
--- a/docs/zh/tools/community_tools/_toc.yaml
+++ b/docs/zh/tools/community_tools/_toc.yaml
@@ -15,7 +15,9 @@ sections:
path: ./development/gcc
- label: 性能优化
sections:
- - href: ../../server/performance/atune/_toc.yaml
+ - href:
+ upstream: https://gitee.com/openeuler/A-Tune/blob/master/docs/zh/24.03_LTS_SP2/_toc.yaml
+ path: ./atune
- href:
upstream: https://gitee.com/openeuler/oeAware-manager/blob/master/docs/zh/master/_toc.yaml
path: ./performance/oeaware