# AdelaiDet **Repository Path**: rWySp2020/AdelaiDet ## Basic Information - **Project Name**: AdelaiDet - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-22 - **Last Updated**: 2024-06-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AdelaiDet AdelaiDet is an open source toolbox for multiple instance-level recognition tasks on top of [Detectron2](https://github.com/facebookresearch/detectron2). All instance-level recognition works from our group are open-sourced here. To date, AdelaiDet implements the following algorithms: * [FCOS](configs/FCOS-Detection/README.md) * [BlendMask](configs/BlendMask/README.md) * [MEInst](configs/MEInst-InstanceSegmentation/README.md) * [ABCNet](configs/BAText/README.md) * [SOLO](https://arxiv.org/abs/1912.04488) _to be released_ ([mmdet version](https://github.com/WXinlong/SOLO)) * [SOLOv2](https://arxiv.org/abs/2003.10152) _to be released_ ([mmdet version](https://github.com/WXinlong/SOLO)) * [DirectPose](https://arxiv.org/abs/1911.07451) _to be released_ * [CondInst](https://arxiv.org/abs/2003.05664) _to be released_ ## Models ### COCO Object Detecton Baselines with [FCOS](https://arxiv.org/abs/1904.01355) Name | inf. time | box AP | download --- |:---:|:---:|:---: [FCOS_R_50_1x](configs/FCOS-Detection/R_50_1x.yaml) | 16 FPS | 38.7 | [model](https://cloudstor.aarnet.edu.au/plus/s/glqFc13cCoEyHYy/download) [FCOS_MS_R_101_2x](configs/FCOS-Detection/MS_R_101_2x.yaml) | 12 FPS | 43.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/M3UOT6JcyHy2QW1/download) [FCOS_MS_X_101_32x8d_2x](configs/FCOS-Detection/MS_X_101_32x8d_2x.yaml) | 6.6 FPS | 43.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/R7H00WeWKZG45pP/download) [FCOS_MS_X_101_32x8d_dcnv2_2x](configs/FCOS-Detection/MS_X_101_32x8d_2x_dcnv2.yaml) | 4.6 FPS | 46.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/TDsnYK8OXDTrafF/download) [FCOS_RT_MS_DLA_34_4x_shtw](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_shared_towers.yaml) | 52 FPS | 39.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/4vc3XwQezyhNvnB/download) More models can be found in FCOS [README.md](configs/FCOS-Detection/README.md). ### COCO Instance Segmentation Baselines with [BlendMask](https://arxiv.org/abs/2001.00309) Model | Name |inf. time | box AP | mask AP | download --- |:---:|:---:|:---:|:---:|:---: Mask R-CNN | [R_101_3x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml) | 10 FPS | 42.9 | 38.6 | BlendMask | [R_101_3x](configs/BlendMask/R_101_3x.yaml) | 11 FPS | 44.8 | 39.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/e4fXrliAcMtyEBy/download) BlendMask | [R_101_dcni3_5x](configs/BlendMask/R_101_dcni3_5x.yaml) | 10 FPS | 46.8 | 41.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/vbnKnQtaGlw8TKv/download) For more models and information, please refer to BlendMask [README.md](configs/BlendMask/README.md). ### COCO Instance Segmentation Baselines with [MEInst](https://arxiv.org/abs/2003.11712) Name | inf. time | box AP | mask AP | download --- |:---:|:---:|:---:|:---: [MEInst_R_50_3x](https://github.com/aim-uofa/AdelaiDet/configs/MEInst-InstanceSegmentation/MEInst_R_50_3x.yaml) | 12 FPS | 43.6 | 34.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/1ID0DeuI9JsFQoG/download) For more models and information, please refer to MEInst [README.md](configs/MEInst-InstanceSegmentation/README.md). ### Total_Text results with [ABCNet](https://arxiv.org/abs/2002.10200) Name | inf. time | e2e-hmean | det-hmean | download --- |:---------:|:---------:|:---------:|:---: [attn_R_50](configs/BAText/TotalText/attn_R_50.yaml) | 11 FPS | 67.1 | 86.0 | [model](https://cloudstor.aarnet.edu.au/plus/s/t2EFYGxNpKPUqhc/download) For more models and information, please refer to ABCNet [README.md](configs/BAText/README.md). Note that: - Inference time for all projects is measured on a NVIDIA 1080Ti with batch size 1. - APs are evaluated on COCO2017 val split unless specified. ## Installation First install Detectron2 following the official guide: [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md). Then build AdelaiDet with: ``` git clone https://github.com/aim-uofa/AdelaiDet.git cd AdelaiDet python setup.py build develop ``` Some projects may require special setup, please follow their own `README.md` in [configs](configs). ## Quick Start ### Inference with Pre-trained Models 1. Pick a model and its config file, for example, `fcos_R_50_1x.yaml`. 2. Download the model `wget https://cloudstor.aarnet.edu.au/plus/s/glqFc13cCoEyHYy/download -O fcos_R_50_1x.pth` 3. Run the demo with ``` python demo/demo.py \ --config-file configs/FCOS-Detection/R_50_1x.yaml \ --input input1.jpg input2.jpg \ --opts MODEL.WEIGHTS fcos_R_50_1x.pth ``` ### Train Your Own Models To train a model with "train_net.py", first setup the corresponding datasets following [datasets/README.md](https://github.com/facebookresearch/detectron2/blob/master/datasets/README.md), then run: ``` OMP_NUM_THREADS=1 python tools/train_net.py \ --config-file configs/FCOS-Detection/R_50_1x.yaml \ --num-gpus 8 \ OUTPUT_DIR training_dir/fcos_R_50_1x ``` To evaluate the model after training, run: ``` OMP_NUM_THREADS=1 python tools/train_net.py \ --config-file configs/FCOS-Detection/R_50_1x.yaml \ --eval-only \ --num-gpus 8 \ OUTPUT_DIR training_dir/fcos_R_50_1x \ MODEL.WEIGHTS training_dir/fcos_R_50_1x/model_final.pth ``` Note that: - The configs are made for 8-GPU training. To train on another number of GPUs, change the `--num-gpus`. - If you want to measure the inference time, please change `--num-gpus` to 1. - We set `OMP_NUM_THREADS=1` by default, which achieves the best speed on our machines, please change it as needed. - This quick start is made for FCOS. If you are using other projects, please check the projects' own `README.md` in [configs](configs). ## Citing AdelaiDet If you use this toolbox in your research or wish to refer to the baseline results, please use the following BibTeX entries. ```BibTeX @inproceedings{tian2019fcos, title = {{FCOS}: Fully Convolutional One-Stage Object Detection}, author = {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong}, booktitle = {Proc. Int. Conf. Computer Vision (ICCV)}, year = {2019} } @inproceedings{chen2020blendmask, title = {{BlendMask}: Top-Down Meets Bottom-Up for Instance Segmentation}, author = {Chen, Hao and Sun, Kunyang and Tian, Zhi and Shen, Chunhua and Huang, Yongming and Yan, Youliang}, booktitle = {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)}, year = {2020} } @inproceedings{zhang2020MEInst, title = {Mask Encoding for Single Shot Instance Segmentation}, author = {Zhang, Rufeng and Tian, Zhi and Shen, Chunhua and You, Mingyu and Yan, Youliang}, booktitle = {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)}, year = {2020} } @inproceedings{liu2020abcnet, title = {{ABCNet}: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network}, author = {Liu, Yuliang and Chen, Hao and Shen, Chunhua and He, Tong and Jin, Lianwen and Wang, Liangwei}, booktitle = {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)}, year = {2020} } @article{wang2019solo, title = {{SOLO}: Segmenting Objects by Locations}, author = {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei}, journal = {arXiv preprint arXiv:1912.04488}, year = {2019} } @article{wang2020solov2, title = {{SOLOv2}: Dynamic, Faster and Stronger}, author = {Wang, Xinlong and Zhang, Rufeng and Kong, Tao and Li, Lei and Shen, Chunhua}, journal = {arXiv preprint arXiv:2003.10152}, year = {2020} } @article{tian2019directpose, title = {{DirectPose}: Direct End-to-End Multi-Person Pose Estimation}, author = {Tian, Zhi and Chen, Hao and Shen, Chunhua}, journal = {arXiv preprint arXiv:1911.07451}, year = {2019} } @article{tian2020conditional, title = {Conditional Convolutions for Instance Segmentation}, author = {Tian, Zhi and Shen, Chunhua and Chen, Hao}, journal = {arXiv preprint arXiv:2003.05664}, year = {2020} } ``` ## License For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact [Chunhua Shen](https://cs.adelaide.edu.au/~chhshen/).