# LSTR **Repository Path**: ryukyu/LSTR ## Basic Information - **Project Name**: LSTR - **Description**: End-to-end Lane Shape Prediction with Transformers - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-15 - **Last Updated**: 2024-01-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README **LSTR**: Lane Shape Prediction with Transformers ======= ![LSTR](.github/logo.png) * 😎End-to-end architecture: Directly output lane shape parameters. * ⚡Super lightweight: The number of model parameters is only 765,787. * ⚡Super low complexity: The number of MACs (1 MAC = 2 FLOP) is only 574.280M. * 😎Training friendly: Lower GPU memory cost. Input (360, 640, 3) with batch_size 16 uses 1245MiB GPU usages. PyTorch(1.5.0) training, evaluating and pretrained models for LSTR (Lane Shape Prediction with Transformers). We streamline the lane detection to a single-stage framework by proposing a novel lane shape model that achieves 96.18 TuSimple accuracy. For details see [End-to-end Lane Shape Prediction with Transformers](https://arxiv.org/pdf/2011.04233.pdf) by Ruijin Liu, Zejian Yuan, Tie Liu, Zhiliang Xiong. ## Updates!! * 【2021/12/03】:fire: Our new work Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints by Ruijin Liu, Dapeng Chen, Tie Liu, Zhiliang Xiong, Zejian Yuan is accepted by AAAI2022! The preprint paper and codes will be released soon! * 【2021/11/23】 We now support [Train and Test Custom Data](https://github.com/liuruijin17/LSTR/tree/custom). Tutorial: [Train and Test Your Custom Data](https://github.com/liuruijin17/LSTR/blob/custom/docs/train_test_custom_data.md). * 【2021/11/16】 We fix the [Multi-GPU Training](https://github.com/liuruijin17/LSTR/tree/multiGPU). * 【2020/12/06】 We now support [CULane Dataset](https://github.com/liuruijin17/LSTR/tree/culane). ## Comming soon - [ ] LSTR-nano(New backbone): 96.33 TuSimple accuracy with only 40% MACs (229.419M) and 40% #Params (302,546) of LSTR. - [ ] Mosaic Augmentation. - [ ] Loguru based logger module. - [ ] Geometry based loss functions. - [ ] Segmentation prior. ## Model Zoo We provide the baseline LSTR model file (trained on TuSimple train and val sets after 500000 iterations) in the ./cache/nnet/LSTR/LSTR_500000.pkl (~3.1MB). ## Data Preparation Download and extract TuSimple train, val and test with annotations from [TuSimple](https://github.com/TuSimple/tusimple-benchmark). We expect the directory structure to be the following: ``` TuSimple/ LaneDetection/ clips/ label_data_0313.json label_data_0531.json label_data_0601.json test_label.json LSTR/ ``` ## Set Envirionment * Linux ubuntu 16.04 ``` conda env create --name lstr --file environment.txt ``` After you create the environment, activate it ``` conda activate lstr ``` Then ``` pip install -r requirements.txt ``` ## Training and Evaluation To train a model: (if you only want to use the train set, please see ./config/LSTR.json and set "train_split": "train") ``` python train.py LSTR ``` * Visualized images are in ./results during training. * Saved model files (every 5000 iterations) are in ./cache during training. To train a model from a snapshot model file: ``` python train.py LSTR --iter 500000 ``` To evaluate (GPU 603MiB usage when evaluating single image iteratively), then you will see the paper's result: ``` python test.py LSTR --testiter 500000 --modality eval --split testing ``` To evaluate FPS (set --batch to maximum the FPS, GPU 877MiB usage if you repeat each image 16 times): ``` python test.py LSTR --testiter 500000 --modality eval --split testing --batch 16 ``` To evaluate and save detected images in ./results/LSTR/500000/testing/lane_debug: ``` python test.py LSTR --testiter 500000 --modality eval --split testing --debug ``` * Demo (displayed parameters are rounded to three significant figures.) ![Demo](.github/0601_1494453331677390055_20_resize.jpg) To evaluate and save decoder attention maps (store --debugEnc to visualize encoder attention maps): ``` python test.py LSTR --testiter 500000 --modality eval --split testing --debug --debugDec ``` To evaluate on a set of images (store your images in ./images, then the detected results will be saved in ./detections): ``` python test.py LSTR --testiter 500000 --modality images --image_root ./ --debug ``` ## Citation ``` @InProceedings{LSTR, author = {Ruijin Liu and Zejian Yuan and Tie Liu and Zhiliang Xiong}, title = {End-to-end Lane Shape Prediction with Transformers}, booktitle = {WACV}, year = {2021} } ``` ## License LSTR is released under BSD 3-Clause License. Please see [LICENSE](LICENSE) file for more information. ## Contributing We actively welcome your pull requests! ## Acknowledgements [DETR](https://github.com/facebookresearch/detr) [PolyLaneNet](https://github.com/lucastabelini/PolyLaneNet) [CornerNet](https://github.com/princeton-vl/CornerNet)