# infinitystar
**Repository Path**: scotth/infinitystar
## Basic Information
- **Project Name**: infinitystar
- **Description**: InfinityStar 是一个统一的时空自回归框架,用于高分辨率图像和动态视频合成
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: main
- **Homepage**: https://www.oschina.net/p/infinitystar
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 2
- **Created**: 2025-11-12
- **Last Updated**: 2025-11-12
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Infinity**⭐️**: Unified **S**pace**T**ime **A**uto**R**egressive Modeling for Visual Generation
[](http://opensource.bytedance.com/discord/invite)
[](https://arxiv.org/abs/2511.04675)
[](https://huggingface.co/FoundationVision/InfinityStar)
Infinity⭐️: Unified Spacetime AutoRegressive Modeling for Visual Generation
---
## 🔥 Updates!!
* Nov 7, 2025: 🔥 Paper, Training and Inference Codes && Checkpoints && Demo Website released!
* Sep 18, 2025: 🎉 InfinityStar is accepted as NeurIPS 2025 Oral.
## 🕹️ Try and Play with Infinity⭐️!
We provide a [demo website](http://opensource.bytedance.com/discord/invite) for you to play with InfinityStar and generate videos. Enjoy the fun of bitwise video autoregressive modeling!
## ✨ Overview
We introduce InfinityStar, a unified spacetime autoregressive framework for high-resolution image and dynamic video synthesis.
- 🧠 **Unified Spacetime Model**: A purely discrete, autoregressive approach that jointly captures spatial and temporal dependencies within a single, elegant architecture.
- 🎬 **Versatile Generation**: This unified design naturally supports a variety of generation tasks such as **text-to-image**, **text-to-video**, **image-to-video**, and **long interactive video synthesis** via straightforward temporal autoregression.
- 🏆 **Leading Performance & Speed**: Through extensive experiments, InfinityStar scores **83.74** on VBench, outperforming all autoregressive models by large margins, even surpassing diffusion competitors like HunyuanVideo, approximately **10x** faster than leading diffusion-based methods.
- 📖 **Pioneering High-Resolution Autoregressive Generation**: To our knowledge, InfinityStar is the first discrete autoregressive video generator capable of producing industrial-level 720p videos, setting a new standard for quality in its class.
### 🔥 Unified modeling for image, video generation and long interactive video synthesis 📈:
## 🎬 Video Demos
#### General Aesthetics
#### Anime & 3D Animation
#### Motion
#### Extended Application: Long Interactive Videos
## Benchmark
### Achieve sota performance on image generation benchmark:
### Achieve sota performance on video generation benchmark:
### Surpassing diffusion competitors like HunyuanVideo*:
## Visualization
### Text to image examples
### Image to video examples
### Video extrapolation examples
## 📑 Open-Source Plan
- [x] Training Code
- [x] Web Demo
- [x] InfinityStar Inference Code
- [x] InfinityStar Models Checkpoints
- [x] InfinityStar-Interact Inference Code
- [ ] InfinityStar-Interact Checkpoints
## Installation
1. We use FlexAttention to speedup training, which requires `torch>=2.5.1`.
2. Install other pip packages via `pip3 install -r requirements.txt`.
## Training Scripts
We provide a comprehensive workflow for training and finetuning our model, covering data organization, feature extraction, and training scripts. For detailed instructions, please refer to `data/README.md`.
## Inference
* **720p Video Generation:**
Use `tools/infer_video_720p.py` to generate 5-second videos at 720p resolution. Due to the high computational cost of training, our released 720p model is trained for 5-second video generation. This script also supports image-to-video generation by specifying an image path.
```bash
python3 tools/infer_video_720p.py
```
* **480p Variable-Length Video Generation:**
We also provide an intermediate checkpoint for 480p resolution, capable of generating videos of 5 and 10 seconds. Since this model is not specifically optimized for Text-to-Video (T2V), we recommend using the experimental Image-to-Video (I2V) and Video-to-Video (V2V) modes for better results. To specify the video duration, you can edit the `generation_duration` variable in `tools/infer_video_480p.py` to either 5 or 10. This script also supports image-to-video and video continuation by providing a path to an image or a video.
```bash
python3 tools/infer_video_480p.py
```
* **480p Long Interactive Video Generation:**
Use `tools/infer_interact_480p.py` to generate a long interactive video in 480p. This script supports interactive video generation. You can provide a reference video and multiple prompts. The model will generate a video interactively with your assistance.
```bash
python3 tools/infer_interact_480p.py
```
## Citation
If our work assists your research, feel free to give us a star ⭐ or cite us using:
```
@Article{VAR,
title={Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction},
author={Keyu Tian and Yi Jiang and Zehuan Yuan and Bingyue Peng and Liwei Wang},
year={2024},
eprint={2404.02905},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```
@misc{Infinity,
title={Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis},
author={Jian Han and Jinlai Liu and Yi Jiang and Bin Yan and Yuqi Zhang and Zehuan Yuan and Bingyue Peng and Xiaobing Liu},
year={2024},
eprint={2412.04431},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.04431},
}
```
```
@misc{InfinityStar,
title={InfinityStar: Unified Spacetime AutoRegressive Modeling for Visual Generation},
author={Jinlai Liu and Jian Han and Bin Yan and Hui Wu and Fengda Zhu and Xing Wang and Yi Jiang and Bingyue Peng and Zehuan Yuan},
year={2025},
eprint={2511.04675},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2511.04675},
}
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.