# CVPR2020-OOH **Repository Path**: seuvcl/CVPR2020-OOH ## Basic Information - **Project Name**: CVPR2020-OOH - **Description**: This is the repository of the implemantation of cvpr 2020. - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 28 - **Forks**: 6 - **Created**: 2020-05-16 - **Last Updated**: 2024-07-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Object-Occluded Human Shape and Pose Estimation from a Single Color Image (CVPR2020 Oral) ## Introduction This is the offical implentation of 'Object-Occluded Human Shape and Pose Estimation from a Single Color Image' (CVPR2020 Oral/TPAMI2022). [[Project Page](https://www.yangangwang.com/papers/ZHANG-OOH-2020-03.html)] ![figure](https://images.gitee.com/uploads/images/2020/0601/202625_9aa5f92b_5505182.png "pipeline1.png") ## News! - Feb 2023: We released the video version of 3DOH50K dataset [link](https://github.com/boycehbz/CHOMP#ocmotion-dataset). - Mar 2022: We add mesh fitting codes which fit SMPL model to the regressed mesh. - Aug 2021: New model with ResNet-50 backbone. A heatmap branch is added to overlay regressed meshes to RGB images. ## Environment This code is based on Python 3.6, CUDA 10.0, cuDNN 7.6 on Windows10. ## Getting Started Clone the repo: ``` git clone https://gitee.com/seuvcl/CVPR2020-OOH.git ``` Install the requirements using conda: ``` conda create -n occlusion python=3.6 conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch pip install -r requirements.txt ``` ## Running the Demo 1) Download the trained model from [here](https://pan.baidu.com/s/1jS5cW_cT2hTTgYxUch4Yow) (extraction code **\[jhwp\]**) and put it in ```trained_model``` folder. 2) Download the official [SMPL](http://smplify.is.tue.mpg.de/) neutral model. Rename the model to ```SMPL_NEUTRAL.pkl``` and put it in ```data``` folder. 3) To test on your own image, you can edit the ```cfg_files\demo.yaml``` and run: ``` python demo.py --config cfg_files\demo.yaml ``` If you want to fit the SMPL model to the regressed mesh, you can set the ```fitting=True``` in ```cfg_files\demo.yaml``` and then run: ``` python demo.py --config cfg_files\demo.yaml ``` ## Dataset We provide the [3DOH50K dataset](https://pan.baidu.com/s/1j1pYGCoPjlbpIBt0Nn1l_g) (extraction code **\[hb1d\]**), which is the first real 3D human dataset for the problem of human reconstruction and pose estimation in occlusion scenarios. Visualizing 3DOH50K: ``` python utils/visualize.py --base_dir /PATH/TO/THE/3DOH50K ``` We also provide the full video dataset at [here](https://github.com/boycehbz/CHOMP#ocmotion-dataset). ## Citation ``` @article{huang2022object, title={Object-Occluded Human Shape and Pose Estimation with Probabilistic Latent Consistency}, author={Huang, Buzhen and Zhang, Tianshu and Wang, Yangang}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2022}, publisher={IEEE} } ``` ``` @inproceedings{ooh20, title = {Object-Occluded Human Shape and Pose Estimation from a Single Color Image}, author = {Tianshu, Zhang and Buzhen, Huang and Yangang, Wang}, booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)}, year = {2020} } ``` ## References PyTorch implementation of SMPL model is from [CalciferZh](https://github.com/CalciferZh/SMPL).