# PhiFlow **Repository Path**: sithphil/PhiFlow ## Basic Information - **Project Name**: PhiFlow - **Description**: 可微分的偏微分方程求解框架 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: https://github.com/tum-pbs/PhiFlow - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2023-03-11 - **Last Updated**: 2023-03-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ![PhiFlow](docs/figures/Logo_DallE2_3_layout.png) ![Build Status](https://github.com/tum-pbs/PhiFlow/actions/workflows/unit-tests.yml/badge.svg) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/phiflow.svg)](https://pypi.org/project/phiflow/) [![PyPI license](https://img.shields.io/pypi/l/phiflow.svg)](https://pypi.org/project/phiflow/) [![Code Coverage](https://codecov.io/gh/tum-pbs/PhiFlow/branch/develop/graph/badge.svg)](https://codecov.io/gh/tum-pbs/PhiFlow/branch/develop/) [![Google Collab Book](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb) ΦFlow is an open-source simulation toolkit built for optimization and machine learning applications. It is written mostly in Python and can be used with [NumPy](https://numpy.org/), [PyTorch](https://pytorch.org/), [Jax](https://github.com/google/jax) or [TensorFlow](https://www.tensorflow.org/). The close integration with these machine learning frameworks allows it to leverage their automatic differentiation functionality, making it easy to build end-to-end differentiable functions involving both learning models and physics simulations. [//]: # (![Gui](https://tum-pbs.github.io/PhiFlow/figures/WebInterface.png)) | | | |------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Fluids Tutorial](https://tum-pbs.github.io/PhiFlow/Fluids_Tutorial.html)   •   [ΦFlow to Blender](https://github.com/intergalactic-mammoth/phiflow2blender) | [Animation Gallery](https://tum-pbs.github.io/PhiFlow/Animations.html)   •   [Solar System](https://tum-pbs.github.io/PhiFlow/Planets_Tutorial.html)   •   [Learning to Throw](https://tum-pbs.github.io/PhiFlow/Learn_to_Throw_Tutorial.html) | ## Features * Variety of built-in PDE operations with focus on fluid phenomena, allowing for concise formulation of simulations. * Tight integration with PyTorch, Jax and TensorFlow for straightforward neural network training with fully differentiable simulations that can [run on the GPU](https://tum-pbs.github.io/PhiFlow/GPU_Execution.html#enabling-gpu-execution). * Flexible, easy-to-use [web interface](https://tum-pbs.github.io/PhiFlow/Web_Interface.html) featuring live visualizations and interactive controls that can affect simulations or network training on the fly. * Object-oriented, vectorized design for expressive code, ease of use, flexibility and extensibility. * Reusable simulation code, independent of backend and dimensionality, i.e. the exact same code can run a 2D fluid sim using NumPy and a 3D fluid sim on the GPU using TensorFlow or PyTorch. * High-level linear equation solver with automated sparse matrix generation. ## Installation Installation with [pip](https://pypi.org/project/pip/) on [Python 3.6](https://www.python.org/downloads/) and above: ``` bash $ pip install phiflow ``` Install [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/install) or [Jax](https://github.com/google/jax#installation) in addition to ΦFlow to enable machine learning capabilities and GPU execution. To enable the web UI, also install [Dash](https://pypi.org/project/dash/). For optimal GPU performance, you may compile the custom CUDA operators, see the [detailed installation instructions](https://tum-pbs.github.io/PhiFlow/Installation_Instructions.html). You can verify your installation by running ```bash $ python3 -c "import phi; phi.verify()" ``` This will check for compatible PyTorch, Jax and TensorFlow installations as well. ## Documentation and Tutorials [**Documentation Overview**](https://tum-pbs.github.io/PhiFlow/)   •   [**▶ YouTube Tutorials**](https://www.youtube.com/playlist?list=PLYLhRkuWBmZ5R6hYzusA2JBIUPFEE755O)   •   [**API**](https://tum-pbs.github.io/PhiFlow/phi/)   •   [**Demos**](https://github.com/tum-pbs/PhiFlow/tree/master/demos)   •   [ **Playground**](https://colab.research.google.com/drive/1zBlQbmNguRt-Vt332YvdTqlV4DBcus2S#offline=true&sandboxMode=true) To get started, check out our YouTube tutorial series and the following Jupyter notebooks: * [](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Math_Introduction.ipynb) [Tensors](https://tum-pbs.github.io/PhiFlow/Math_Introduction.html): Introduction to tensors. * [](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Fluids_Tutorial.ipynb) [Fluids](https://tum-pbs.github.io/PhiFlow/Fluids_Tutorial.html): Introduction to core classes and fluid-related functions. * [](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Planets_Tutorial.ipynb) [Solar System](https://tum-pbs.github.io/PhiFlow/Planets_Tutorial.html): Visualize a many-body system with Newtonian gravity. * [](https://colab.research.google.com/github/tum-pbs/PhiFlow/blob/develop/docs/Learn_to_Throw_Tutorial.ipynb) [Learn to Throw](https://tum-pbs.github.io/PhiFlow/Learn_to_Throw_Tutorial.html): Train a neural network to hit a target, comparing supervised and differentiable physics losses. If you like to work with an IDE, like PyCharm or VS Code, the following demos will also be helpful: * [smoke_plume.py](demos/smoke_plume.py) runs a smoke simulation and displays it in the web interface. * [optimize_pressure.py](demos/differentiate_pressure.py) uses TensorFlow to optimize a velocity field and displays it in the web interface. ## Publications We will upload a whitepaper, soon. In the meantime, please cite the ICLR 2020 paper. * [Learning to Control PDEs with Differentiable Physics](https://ge.in.tum.de/publications/2020-iclr-holl/), *Philipp Holl, Vladlen Koltun, Nils Thuerey*, ICLR 2020. * [Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers](https://arxiv.org/abs/2007.00016), *Kiwon Um, Raymond Fei, Philipp Holl, Robert Brand, Nils Thuerey*, NeurIPS 2020. * [ΦFlow: A Differentiable PDE Solving Framework for Deep Learning via Physical Simulations](https://montrealrobotics.ca/diffcvgp/), *Nils Thuerey, Kiwon Um, Philipp Holl*, DiffCVGP workshop at NeurIPS 2020. * [Physics-based Deep Learning](https://physicsbaseddeeplearning.org/intro.html) (book), *Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, Kiwon Um*, DiffCVGP workshop at NeurIPS 2020. * [Half-Inverse Gradients for Physical Deep Learning](https://arxiv.org/abs/2203.10131), *Patrick Schnell, Philipp Holl, Nils Thuerey*, ICLR 2022. * [Scale-invariant Learning by Physics Inversion](https://arxiv.org/abs/2109.15048), *Philipp Holl, Vladlen Koltun, Nils Thuerey*, NeurIPS 2022. ΦFlow has been used in the following data sets: * [PDEBench](https://github.com/pdebench/PDEBench) * [PDEarena](https://microsoft.github.io/pdearena/) ## Version History The [Version history](https://github.com/tum-pbs/PhiFlow/releases) lists all major changes since release. The releases are also listed on [PyPI](https://pypi.org/project/phiflow/). ## Contributions Contributions are welcome! Check out [this document](CONTRIBUTING.md) for guidelines. ## Acknowledgements This work is supported by the ERC Starting Grant realFlow (StG-2015-637014) and the Intel Intelligent Systems Lab.