# TCT_data **Repository Path**: suppermanljr/TCT_data ## Basic Information - **Project Name**: TCT_data - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-27 - **Last Updated**: 2025-05-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TCT_data A large annotated cervical cytology images dataset for AI models to aid cervical cancer screening. *scientific data* [Journal Link](https://www.nature.com/articles/s41597-025-04374-5)

## Installation Once you clone the repo, please run the following command to create the conda environment. ```bash $ conda env create --file environment.yaml ``` ## Usage Directory description: ``` ├─ network // directory of detection networks ├─ netdetr // directory of detr network ├─ netsparse // directory of sparse rcnn network ├─ netyolo // directory of yolo network ├─ tool // directory of tool codes ├─ datasets.py // dataset code ├─ train.py // main code for model training ├─ trainer.py // code for training utils ├─ launch.sh // train.py launcher ├─ _utils.py // other utils code ``` Run the following code for model training: ```bash $ bash launch.sh ``` This will initiate the script `train.py` for 5-fold cross-validation model training. Note that the csv file paths need to be changed according to the actual situation.