# TCT_data
**Repository Path**: suppermanljr/TCT_data
## Basic Information
- **Project Name**: TCT_data
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-05-27
- **Last Updated**: 2025-05-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# TCT_data
A large annotated cervical cytology images dataset for AI models to aid cervical cancer screening.
*scientific data*
[Journal Link](https://www.nature.com/articles/s41597-025-04374-5)

## Installation
Once you clone the repo, please run the following command to create the conda environment.
```bash
$ conda env create --file environment.yaml
```
## Usage
Directory description:
```
├─ network // directory of detection networks
├─ netdetr // directory of detr network
├─ netsparse // directory of sparse rcnn network
├─ netyolo // directory of yolo network
├─ tool // directory of tool codes
├─ datasets.py // dataset code
├─ train.py // main code for model training
├─ trainer.py // code for training utils
├─ launch.sh // train.py launcher
├─ _utils.py // other utils code
```
Run the following code for model training:
```bash
$ bash launch.sh
```
This will initiate the script `train.py` for 5-fold cross-validation model training. Note that the csv file paths need to be changed according to the actual situation.