# tensorflow_tutorials **Repository Path**: suuyaoo/tensorflow_tutorials ## Basic Information - **Project Name**: tensorflow_tutorials - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2017-03-19 - **Last Updated**: 2024-06-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # UPDATE (July 12, 2016) New **free MOOC course** covering all of this material in much more depth, as well as much more including combined variational autoencoders + generative adversarial networks, visualizing gradients, deep dream, style net, and recurrent networks: **https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow-i/info** # TensorFlow Tutorials You can find python source code under the `python` directory, and associated notebooks under `notebooks`. | | Source code | Description | | --- | --- | --- | |1| **[basics.py](python/01_basics.py)** | Setup with tensorflow and graph computation.| |2| **[linear_regression.py](python/02_linear_regression.py)** | Performing regression with a single factor and bias. | |3| **[polynomial_regression.py](python/03_polynomial_regression.py)** | Performing regression using polynomial factors.| |4| **[logistic_regression.py](python/04_logistic_regression.py)** | Performing logistic regression using a single layer neural network.| |5| **[basic_convnet.py](python/05_basic_convnet.py)** | Building a deep convolutional neural network.| |6| **[modern_convnet.py](python/06_modern_convnet.py)** | Building a deep convolutional neural network with batch normalization and leaky rectifiers.| |7| **[autoencoder.py](python/07_autoencoder.py)** | Building a deep autoencoder with tied weights.| |8| **[denoising_autoencoder.py](python/08_denoising_autoencoder.py)** | Building a deep denoising autoencoder which corrupts the input.| |9| **[convolutional_autoencoder.py](python/09_convolutional_autoencoder.py)** | Building a deep convolutional autoencoder.| |10| **[residual_network.py](python/10_residual_network.py)** | Building a deep residual network.| |11| **[variational_autoencoder.py](python/11_variational_autoencoder.py)** | Building an autoencoder with a variational encoding.| # Installation Guides * [TensorFlow Installation](https://github.com/tensorflow/tensorflow) * [OS specific setup](https://github.com/tensorflow/tensorFlow/blob/master/tensorflow/g3doc/get_started/os_setup.md) * [Installation on EC2 GPU Instances](http://eatcodeplay.com/installing-gpu-enabled-tensorflow-with-python-3-4-in-ec2/) For Ubuntu users using python3.4+ w/ CUDA 7.5 and cuDNN 7.0, you can find compiled wheels under the `wheels` directory. Use `pip3 install tensorflow-0.8.0rc0-py3-none-any.whl` to install, e.g. and be sure to add: `export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64" ` to your `.bashrc`. Note, this still requires you to install CUDA 7.5 and cuDNN 7.0 under `/usr/local/cuda`. # Resources * [Official Tensorflow Tutorials](https://www.tensorflow.org/versions/r0.7/tutorials/index.html) * [Tensorflow API](https://www.tensorflow.org/versions/r0.7/api_docs/python/index.html) * [Tensorflow Google Groups](https://groups.google.com/a/tensorflow.org/forum/#!forum/discuss) * [More Tutorials](https://github.com/nlintz/TensorFlow-Tutorials) # Author Parag K. Mital, Jan. 2016. http://pkmital.com # License See LICENSE.md