# STResNet **Repository Path**: tangkai2020/STResNet ## Basic Information - **Project Name**: STResNet - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-10 - **Last Updated**: 2021-04-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # STResNet Spatial-Temporal ResNet code for efficient CT image denoising. This repository is the official implementation of [Efficient and Accurate Spatial-Temporal Denoising Network for LDCT scans](url) ## Requirements * CUDA > 10.2, cuDNN > 7.6 * Python virualenv To install requirements: ```setup pip install -r requirements.txt ``` * Pull docker container ``` docker pull nvcr.io/nvidia/pytorch:19.11-py3 ``` ## Evaluation To evaluate the model in test set, run: ```eval python test.py -opt options/test/.json ``` Note that our UCLA data are in h5, set `data_type` to `h5` in json. To evaluate with your own dicom images, chage `data_type` to `dicom` in json. You need to prepare your own input folder with each case folder containing all .dcm images. The resulting outputs are saved at result folder. ## Models Pretrained models are stored in experiemnts\\models\xxx.pth folder ## Results Our model achieves the following performance on image metrics and speed-ups. | | | ↑PSNR(dB) | ↑SSIM | ↓LPIPS | Inference time (sec) | Training time per iter (sec) | Inference Speed-up | Training Speed-up | |------|----------------------|---------------------|-----------------|:-----------------:|----------------------|-------------------------------|--------------------|-------------------| | FP32 | SRResNet (baseline) | 31.31±0.30 | 0.7216±0.0113 | 0.3635±0.0074 | 27.4(446.7*) | 6.5 | N/A | N/A | | | STResNet | 31.91±0.44 | 0.7265±0.0110 | 0.3715±0.0075 | 14.4(267.0*) | 3.9 | 1.67 | 1.65 | | FP16 | SRResNet | 32.39±0.52 | 0.7277±0.0111 | 0.3640±0.0075 | 13.8 | 4.9 | N/A | 1.31 | | | STResNet | 32.60±0.64 | 0.7259±0.0111 | 0.3732±0.0076 | 17.0 | 3.2 | N/A | 2.04 | | INT8 | SRResNet | 31.15±0.28 | 0.7064±0.0109 | 0.3501±0.0075 | 108.7* | N/A | 4.11 | N/A | | | STResNet | 31.11±0.30 | 0.7135±0.0109 | 0.3555±0.0076 | 62.8* | N/A | 7.11 | N/A |