# UNetPlusPlus **Repository Path**: tangkai2020/UNetPlusPlus ## Basic Information - **Project Name**: UNetPlusPlus - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-20 - **Last Updated**: 2021-07-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate image segmentation. UNet++ consists of U-Nets of varying depths whose decoders are densely connected at the same resolution via the redesigned skip pathways, which aim to address two key challenges of the U-Net: 1) unknown depth of the optimal architecture and 2) the unnecessarily restrictive design of skip connections. ## Paper This repository provides the official Keras implementation of UNet++ in the following papers: **UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation**
[Zongwei Zhou](https://www.zongweiz.com), [Md Mahfuzur Rahman Siddiquee](https://github.com/mahfuzmohammad), [Nima Tajbakhsh](https://www.linkedin.com/in/nima-tajbakhsh-b5454376/), and [Jianming Liang](https://chs.asu.edu/jianming-liang)
Arizona State University
IEEE Transactions on Medical Imaging ([TMI](https://ieee-tmi.org/))
[paper](https://arxiv.org/abs/1912.05074) | [code](https://github.com/MrGiovanni/Nested-UNet) **UNet++: A Nested U-Net Architecture for Medical Image Segmentation**
[Zongwei Zhou](https://www.zongweiz.com), [Md Mahfuzur Rahman Siddiquee](https://github.com/mahfuzmohammad), [Nima Tajbakhsh](https://www.linkedin.com/in/nima-tajbakhsh-b5454376/), and [Jianming Liang](https://chs.asu.edu/jianming-liang)
Arizona State University
Deep Learning in Medical Image Analysis ([DLMIA](https://cs.adelaide.edu.au/~dlmia4/)) 2018. **(Oral)**
[paper](https://arxiv.org/abs/1807.10165) | [code](https://github.com/MrGiovanni/Nested-UNet) | [slides](https://docs.wixstatic.com/ugd/deaea1_1d1e512ebedc4facbb242d7a0f2b7a0b.pdf) | [poster](https://docs.wixstatic.com/ugd/deaea1_993c14ef78f844c88a0dae9d93e4857c.pdf) | [blog](https://zhuanlan.zhihu.com/p/44958351) ## Official implementation - keras/ - pytorch/ ## Other implementation - [[PyTorch](https://github.com/qubvel/segmentation_models.pytorch)] (by Pavel Yakubovskiy) - [[PyTorch](https://github.com/4uiiurz1/pytorch-nested-unet)] (by 4ui_iurz1) - [[PyTorch](https://towardsdatascience.com/biomedical-image-segmentation-unet-991d075a3a4b)] (by Hong Jing) - [[PyTorch](https://github.com/ZJUGiveLab/UNet-Version)] (by ZJUGiveLab) - [[PyTorch](https://github.com/MontaEllis/Pytorch-Medical-Segmentation)] (by MontaEllis) - [[Keras](https://www.kaggle.com/meaninglesslives/nested-unet-with-efficientnet-encoder)] (by Siddhartha) ## Citation If you use UNet++ for your research, please cite our papers: ``` @article{zhou2019unetplusplus, title={UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation}, author={Zhou, Zongwei and Siddiquee, Md Mahfuzur Rahman and Tajbakhsh, Nima and Liang, Jianming}, journal={IEEE Transactions on Medical Imaging}, year={2019}, publisher={IEEE} } @incollection{zhou2018unetplusplus, title={Unet++: A Nested U-Net Architecture for Medical Image Segmentation}, author={Zhou, Zongwei and Siddiquee, Md Mahfuzur Rahman and Tajbakhsh, Nima and Liang, Jianming}, booktitle={Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support}, pages={3--11}, year={2018}, publisher={Springer} } @phdthesis{zhou2021towards, title={Towards Annotation-Efficient Deep Learning for Computer-Aided Diagnosis}, author={Zhou, Zongwei}, year={2021}, school={Arizona State University} } ``` ## Acknowledgments This research has been supported partially by NIH under Award Number R01HL128785, by ASU and Mayo Clinic through a Seed Grant and an Innovation Grant. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. This is a patent-pending technology.