# Coursera-Deep-Learning-deeplearning.ai
**Repository Path**: tlkt/Coursera-Deep-Learning-deeplearning.ai
## Basic Information
- **Project Name**: Coursera-Deep-Learning-deeplearning.ai
- **Description**: (完结)网易云课堂微专业《深度学习工程师》听课笔记,编程作业和课后练习
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 3
- **Forks**: 1
- **Created**: 2020-01-23
- **Last Updated**: 2025-11-08
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
网易云课堂微专业-Andrew Ng《深度学习》课后练习编程作业和笔记
该仓库包含本课程的所有笔记内容,和课程练习,我珍惜这门课的每一节课,通过对知识的整理能够加深对知识的理解,也通过整理的内容为有需要的童鞋提供些许帮助!!
*欢迎 Star*
[网易云课堂](http://study.163.com/) 提供的免费正版的课程资料,给予了我极大的帮助。
## [博客传送门](https://alberthg.github.io/tags/#deeplearning.ai)
## 笔记
- [神经网络与深度学习](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/01-Neural%20Networks%20and%20Deep%20Learning)
- [神经网络的基础](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/01-Neural%20Networks%20and%20Deep%20Learning/week2)
- [浅层神经网络](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/01-Neural%20Networks%20and%20Deep%20Learning/week3)
- [深层神经网络](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/01-Neural%20Networks%20and%20Deep%20Learning/week4)
- [改进深度神经网络:超参数调整,正则化和优化](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/02-Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization)
- [深度学习的实用层面](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/02-Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/week1)
- [优化算法](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/02-Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/week2)
- [超参数调试、Batch 正则化和程序框架](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/02-Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/week3)
- [结构化机器学习项目](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/03-Structuring%20Machine%20Learning%20Projects)
- [卷积神经网络](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/04-Convolutional%20Neural%20Networks)
- [卷积神经网络基础](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/04-Convolutional%20Neural%20Networks/week1)
- [深度卷积网络:实例探究](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/04-Convolutional%20Neural%20Networks/week2)
- [目标检测](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/04-Convolutional%20Neural%20Networks/week3)
- [特殊应用:人脸识别和神经风格转换](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/04-Convolutional%20Neural%20Networks/week4)
- [序列模型](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/05-Sequence%20Models)
- [循环神经网络(RNN)](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/05-Sequence%20Models/week1)
- [自然语言处理与词嵌入](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/05-Sequence%20Models/week2)
- [序列模型和注意力机制](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/tree/master/05-Sequence%20Models/week3)
## 课程地址
[deeplearning.ai - 网易云课堂 - 深度学习工程师微专业](https://study.163.com/provider/2001053000/index.htm)
## 参考项目
在整理自己的笔记的时候,从下列道友中参考了很多内容,谢之:
* [红色石头的机器学习之路](https://zhuanlan.zhihu.com/Redstone)
* [机器学习之路](https://zhuanlan.zhihu.com/koalatree)
* [KyonHuang-吴恩达《深度学习》系列课程笔记](http://kyonhuang.top/Andrew-Ng-Deep-Learning-notes/#/)
## 备注
- GitHub 的 README.md 文件不提供 LaTeX 公式解析,可使用 chrome 浏览器插件[GitHub with MathJax](https://chrome.google.com/webstore/detail/github-with-mathjax/ioemnmodlmafdkllaclgeombjnmnbima)
- 由于 Github 中的文件大小限制规则,编程练习中缺少的数据集文件可以从对应文件夹里边的".gitignore"文件中得知。或者在下方下载完整的作业包。
## 作业包
神经网络与深度学习
- [Class1-Week2-神经网络的基础](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EpAz0IkD8ZJFgd9JFjs5-50BR7P0mBLVcEwhEofD0A9Rzw?e=1USVVD)
- [Class1-Week3-浅层神经网络](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EuzaPNhIaotBrurYhJH2z7gBzMxlu-J9BrMNNYF3P8efhA?e=1BX6ht)
- [Class1-Week4-深层神经网络](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EmRlwB2RJrVEuH8ddjqJoogBWm498PA58TcINJF5W8x9xA?e=Wm6Oeo)
改进深度神经网络:超参数调整,正则化和优化
- [Class2-Week1-深度学习的实用层面](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/Et1y993iHHdMm9lN-7iG4gwBsucuZ8vOVEpO-8EkwvsJ8Q?e=54sg8L)
- [Class2-Week2-优化算法](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EjtGojLKuMRLsm6KJdciIx8BRQUdwa6ngK-cGR3eEJnhIg?e=bvZ9NQ)
- [Class2-Week3-超参数调试、Batch 正则化和程序框架](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EgKFXlPAde9IoSUYVHoA8xABYoyl3B-o8W7qjTNcM4eFfQ?e=gYJD58)
卷积神经网络
- [Class4-Week1-卷积神经网络基础](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EqFrAVrvHZBNkN0Z6jyILykB8BhF24MLk5P4zP7yKgVyUA?e=tLmGaX)
- [Class4-Week2-深度卷积网络:实例探究](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EuNiXQ2VYBlCoUIRCVJc1QUBUdnAHRb6VP6k6nLpxvk86g?e=rsp6HH)
- [Class4-Week3-目标检测](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EgrReZ4wCcRKssRAx3QLE4gBXsH9-tUF_Y8Pms-_x235cQ?e=SwmUki)
- [Class4-Week4-特殊应用:人脸识别和神经风格转换](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/Eocx2TcfHlhAlw15qd_GY6wBlu38O7-xIgNNv4Eh3ooU7A?e=yY2okb)
序列模型
- [Class5-Week1-循环神经网络(RNN)](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EjAxMUxkSWJPhChFFdNinOkBrveKcu2XrpZwtUKTfsRo1g?e=GDAXdi)
- [Class5-Week2-自然语言处理与词嵌入](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/EpYQTM__FThClHISMeBIZ08BWePqw-7Ul8z5oTkhh3_RLA?e=IdthX7)
- [Class5-Week3-序列模型和注意力机制](https://stu2013jnueducn-my.sharepoint.com/:f:/g/personal/hhhgggpps_stu2013_jnu_edu_cn/Eom2rvlZ1vBKg8Yoa5IqBR4BZFAIxmXHgShxcbAhTg-VMw?e=7zCCYB)
## License
遵循 MIT 许可证。有关详细,请参阅 [LICENSE](https://github.com/AlbertHG/Coursera-Deep-Learning-deeplearning.ai/blob/master/LICENSE)。