# sumolights **Repository Path**: trafficcoder/sumolights ## Basic Information - **Project Name**: sumolights - **Description**: SUMO adaptive traffic signal control - DQN, DDPG, Webster's, Max-pressure, Self-Organizing Traffic Lights - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2020-12-13 - **Last Updated**: 2021-12-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # sumolights SUMO adaptive traffic signal control - DQN, DDPG, Webster's, Max-pressure, Self-Organizing Traffic Lights Technical details available at [An Open-Source Framework for Adaptive Traffic Signal Control](https://arxiv.org/abs/1909.00395) ## Setup Install SUMO traffic microsimulator by [following instructions here](https://sumo.dlr.de/wiki/Installing) (v1.2). Using Python 3, create a virtual environment and then install dependancies with: ``` pip install -r requirements.txt ``` ## Comparing adaptive traffic signal controllers First train reinforcement learning controllers: ``` ./train_dqn.sh ./train_ddpg.sh ``` Then execute simulations to generate performance results for all controllers: ``` ./gen_results.sh ``` Visualize results with: ``` python graph_results.py ``` ![Screenshot](samples/travel_time.png) ![Screenshot](samples/intersection_moe.png) ## Optimizing hyperparameters Search for optimal hyperparameters for each controller: ``` ./hp_optimization ``` Warning, search for reinforcement learning can require significant compute time! Visualize hyperparameters with: ``` python graph_results.py -type hp ``` ![Screenshot](samples/tsc_hp.png) ![Screenshot](samples/hp.png)