# Python-Image-feature-extraction
**Repository Path**: tu-long/Python-Image-feature-extraction
## Basic Information
- **Project Name**: Python-Image-feature-extraction
- **Description**: Python实现提取图像的纹理、颜色特征,包含快速灰度共现矩阵(GLCM)、LBP特征、颜色矩、颜色直方图。
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 3
- **Forks**: 1
- **Created**: 2021-09-18
- **Last Updated**: 2025-04-05
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Python-Image-feature-extraction
Python实现提取图像的纹理、颜色特征,包含快速灰度共现矩阵(GLCM)、LBP特征、颜色矩、颜色直方图。
# 原始图片

## 纹理特征
### GLCM
numpy的快速灰度共现矩阵(GLCM)。该脚本在没有每个像素For循环的情况下计算GLCM,并且在scikit-image上比GLCM更快地工作。
```python
import fast_glcm
from skimage import data
if __name__ == '__main__':
img = data.camera()
glcm_mean = fast_glcm.fast_glcm_mean(img)
```

### LBP
获取图像的LBP特征:对图像的原始LBP模式、等价LBP模式、旋转不变LBP模式,以及等价旋转不变LBP模式的LBP特征进行提取以及显示。
get_LBP_from_Image.py 主要文件 获取图像的LBP特征。
get_resolve_map.py和get_uniform_map.py主要是做降维后新的像素值的映射。已经将求出的结果写入了get_LBP_from_Image.py中,这两个主要是帮助理解算法降维后新的像素值怎么得到的。

## 颜色特征
### 颜色矩
颜色是彩色图像最重要的内容之一,被广泛用于图像检索中。但从图像中提取颜色特征时,很多算法都先要对图像进行量化处理。量化处理容易导致误检,并且产生的图像特征维数较高,不利于检索。AMA Stricker和M Orengo提出了颜色矩的方法,颜色矩是一种简单有效的颜色特征表示方法,有一阶矩(均值,mean)、二阶矩(方差, variance)和三阶矩(斜度,skewness)等,由于颜色信息主要分布于低阶矩中,所以用一阶矩,二阶矩和三阶矩足以表达图像的颜色分布,颜色矩已证明可有效地表示图像中的颜色分布,该方法的优点在于:不需要颜色空间量化,特征向量维数低;但实验发现该方法的检索效率比较低,因而在实际应用中往往用来过滤图像以缩小检索范围。
### 颜色直方图



# 参考
* [michael92ht/LBP](https://github.com/michael92ht/LBP)
* [tzm030329/GLCM](https://github.com/tzm030329/GLCM)