# ComplexValuedCNN **Repository Path**: wang-changan/ComplexValuedCNN ## Basic Information - **Project Name**: ComplexValuedCNN - **Description**: Complex Valued CNN - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-08 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ComplexValuedCNN Complex CNN in Pytorch, implementation of the paper Deep Complex Networks : https://arxiv.org/abs/1705.09792 ### Modules implemeted : - [x] Complex Conv2d ![conv](https://raw.githubusercontent.com/Medabid1/ComplexValuedCNN/master/img/nn.png?token=AHFNLWOQ7J6TJR6IXL7AQFS5MQO5M) - [x] Complex ConvTranspose2d - [x] Complex AvgPool2d - [x] Complex Linear ### Activation function : - [x] zRelu - [x] CRelu ## Usage : 1. Define your Complex input using the class CPLX. `x = CPLX(real_part, imaginary_part)` 2. Build your model using src modules. 3. Use the loss function in `utils.py` to train your model. if the labels are real valued, set `use_magnitude = True` #### ToDo - Complex UNet