# Machine-Learning_ZhouZhihua **Repository Path**: wdy_/Machine-Learning_ZhouZhihua ## Basic Information - **Project Name**: Machine-Learning_ZhouZhihua - **Description**: Exercises answers to the book "machine-learning" written by Prof. Zhou Zhihua of Nanjing University - **Primary Language**: HTML - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-26 - **Last Updated**: 2021-05-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Machine-Learning (Zhou Zhihua)(周志华《机器学习》课后练习) ----- My answers (i.e. ideas, code) for the book "Machine Learning (机器学习)" written by Prof. Zhou Zhihua. ps. all the code exercises are implemented by **Python** in **eclipse-pydev** env. for more info: welcome to my blog: [Snoopy_Yuan的博客](http://blog.csdn.net/snoopy_yuan) and [周志华《机器学习》课后习题解答系列](http://blog.csdn.net/snoopy_yuan/article/details/62045353) (更新中...2017-7-5) ---- ### [Ch6.Support Vector Machine (支持向量机)](./ch6_support_vector_machine/) ### 练习包括(exercises include): - 支持向量分析实验([code here](./ch6_support_vector_machine/6.2_SVM_test/)); - 支持向量机与BP网络/C4.5决策树对比实验(experiment of SVM/BP/C4.5)([code here](./ch6_support_vector_machine/6.3_SVM_compare/)); ### [Ch5.Neural Networks (神经网络)](./ch5_neural_networks/) ### 练习包括(exercises include): - 激活函数选择考虑(selection of activation function); - Sigmoid激活函数与对率回归的联系(the relationships between Sigmoid() and Logistic Regression); - BP算法推导(conduction of BP algorithm); - 学习率分析(analysis of learning rate in NN training); - 标准BP算法和累积BP算法对比实验(comparative experiment of BP)([code here](./ch5_neural_networks/5.5_BP/)); - BP算法改进(improvement of BP algorithm)([code here](./ch5_neural_networks/5.6_BP_improve/)); - RBF神经网络实现(implementation of RBF network)([code here](./ch5_neural_networks/5.7_RBF_BP/)); - SOM神经网络实验(experiment of SOM network)([code here](./ch5_neural_networks/5.8_SOM/)); - 卷积神经网络实验 - 字符识别(experiment of CNN on MNIST)([code here](./ch5_neural_networks/5.10_CNN/)); ### [Ch4.Decision Tree (决策树)](./ch4_decision_tree/) ### 练习包括(exercises include): - 决策树划分选择准则; - 编程实现ID3算法(implementation of ID3)([code here](./ch4_decision_tree/4.3_ID3/)); - 编程实现CART算法与剪枝操作(implementation of CART and pruning)([code here](./ch4_decision_tree/4.4_CART/)); - 多变量决策树生成方式(multivariate decision tree); - 非递归决策树生成方法(generation of decision - non-recursive approach using DFS/BFS) ### [Ch3.Linear Model (线性模型)](./ch3_linear_model/) ### 练习包括(exercises include): - 分析偏置项b(bias terms); - 证明对数似然是凸函数(convex functions); - 编程实现对率回归(implementation of logistic regression)([code here](./ch3_linear_model/3.3_logistic_regression_watermelon/)); - 实验比较k-fold_CV和LOOCV(analysis of cross-validation)([code here](./ch3_linear_model/3.4_cross_validation/)); - 编程实现线性判别分析(implementation of LDA)([code here](./ch3_linear_model/3.5_LDA/)); - 线性判别分析的非线性拓展(nonlinear stretching of LDA); - 最优ECOC编码方式; - 多分类到二分类分解时类别不平衡的考虑(class-imbalance)。 ### [Ch2.Model Evaluation and Selection (模型评估与选择)](./ch2_model_evaluation_and_selection/) ### 练习包括(exercises include): - 分层抽样(stratified sampling)划分训练集与测试集; - 留一法(leave-one-out)与k-折交叉验证法(k-fold cross validation)比较; - F1值与BEP的关联; - TPR、FPR、P、R之间的关联; - AUC推导; - 错误率与ROC的关系 - ROC曲线与代价曲线(cost-curve)的对应关系; ### [Ch1.Introduction (绪论)](./ch1_introduction/) ### 练习包括(exercises include): - 求版本空间(version space); - 析合范式(disjunctive normal form)提升假设空间(hypothesis space); - 噪声环境(noise)下归纳偏好(inductive bias)考虑;