# MemGPT
**Repository Path**: wu-yulin-1/MemGPT
## Basic Information
- **Project Name**: MemGPT
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-10-20
- **Last Updated**: 2023-10-20
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# [MemGPT](https://memgpt.ai)
Try out our MemGPT chatbot on Discord!
[](https://discord.gg/9GEQrxmVyE)
[](https://arxiv.org/abs/2310.08560)
🤖 Create perpetual chatbots with self-editing memory!
🗃️ Chat with your data - talk to your SQL database or your local files!
SQL Database
Local files
📄 You can also talk to docs - for example ask about LlamaIndex!
ChatGPT (GPT-4) when asked the same question:
(Question from https://github.com/run-llama/llama_index/issues/7756)
## Quick setup
Join Discord and message the MemGPT bot (in the `#memgpt` channel). Then run the following commands (messaged to "MemGPT Bot"):
* `/profile` (to create your profile)
* `/key` (to enter your OpenAI key)
* `/create` (to create a MemGPT chatbot)
Make sure your privacy settings on this server are open so that MemGPT Bot can DM you: \
MemGPT → Privacy Settings → Direct Messages set to ON
You can see the full list of available commands when you enter `/` into the message box.
## What is MemGPT?
Memory-GPT (or MemGPT in short) is a system that intelligently manages different memory tiers in LLMs in order to effectively provide extended context within the LLM's limited context window. For example, MemGPT knows when to push critical information to a vector database and when to retrieve it later in the chat, enabling perpetual conversations. Learn more about MemGPT in our [paper](https://arxiv.org/abs/2310.08560).
## Running MemGPT locally
Install dependencies:
```sh
pip install -r requirements.txt
```
Extra step for Windows:
```sh
# only needed on Windows
pip install pyreadline
```
Add your OpenAI API key to your environment:
```sh
# on Linux/Mac
export OPENAI_API_KEY=YOUR_API_KEY
```
```sh
# on Windows
set OPENAI_API_KEY=YOUR_API_KEY
```
To run MemGPT for as a conversation agent in CLI mode, simply run `main.py`:
```sh
python3 main.py
```
To create a new starter user or starter persona (that MemGPT gets initialized with), create a new `.txt` file in [/memgpt/humans/examples](/memgpt/humans/examples) or [/memgpt/personas/examples](/memgpt/personas/examples), then use the `--persona` or `--human` flag when running `main.py`. For example:
```sh
# assuming you created a new file /memgpt/humans/examples/me.txt
python main.py --human me.txt
```
### `main.py` flags
```text
--persona
load a specific persona file
--human
load a specific human file
--first
allows you to send the first message in the chat (by default, MemGPT will send the first message)
--debug
enables debugging output
--archival_storage_faiss_path=
load in document database (backed by FAISS index)
--archival_storage_files=""
pre-load files into archival memory
--archival_storage_files_compute_embeddings=""
pre-load files into archival memory and also compute embeddings for embedding search
--archival_storage_sqldb=
load in SQL database
```
### Interactive CLI commands
While using MemGPT via the CLI you can run various commands:
```text
//
enter multiline input mode (type // again when done)
/exit
exit the CLI
/save
save a checkpoint of the current agent/conversation state
/load
load a saved checkpoint
/dump
view the current message log (see the contents of main context)
/memory
print the current contents of agent memory
/pop
undo the last message in the conversation
/heartbeat
send a heartbeat system message to the agent
/memorywarning
send a memory warning system message to the agent
```
## Example applications
Use MemGPT to talk to your Database!
MemGPT's archival memory let's you load your database and talk to it! To motivate this use-case, we have included a toy example.
Consider the `test.db` already included in the repository.
id | name | age
--- | --- | ---
1 | Alice | 30
2 | Bob | 25
3 | Charlie | 35
To talk to this database, run:
```sh
python main.py --archival_storage_sqldb=memgpt/personas/examples/sqldb/test.db
```
And then you can input the path to your database, and your query.
```python
Please enter the path to the database. test.db
...
Enter your message: How old is Bob?
...
🤖 Bob is 25 years old.
```
Loading local files into archival memory
MemGPT enables you to chat with your data locally -- this example gives the workflow for loading documents into MemGPT's archival memory.
To run our example where you can search over the SEC 10-K filings of Uber, Lyft, and Airbnb,
1. Download the .txt files from [Hugging Face](https://huggingface.co/datasets/MemGPT/example-sec-filings/tree/main) and place them in `memgpt/personas/examples/preload_archival`.
2. In the root `MemGPT` directory, run
```bash
python3 main.py --archival_storage_files="memgpt/personas/examples/preload_archival/*.txt" --persona=memgpt_doc --human=basic
```
If you would like to load your own local files into MemGPT's archival memory, run the command above but replace `--archival_storage_files="memgpt/personas/examples/preload_archival/*.txt"` with your own file glob expression (enclosed in quotes).
#### Enhance with embeddings search
In the root `MemGPT` directory, run
```bash
python3 main.py --archival_storage_files_compute_embeddings="" --persona=memgpt_doc --human=basic
```
This will generate embeddings, stick them into a FAISS index, and write the index to a directory, and then output:
```
To avoid computing embeddings next time, replace --archival_storage_files_compute_embeddings= with
--archival_storage_faiss_path= (if your files haven't changed).
```
If you want to reuse these embeddings, run
```bash
python3 main.py --archival_storage_faiss_path="" --persona=memgpt_doc --human=basic
```
Talking to LlamaIndex API Docs
MemGPT also enables you to chat with docs -- try running this example to talk to the LlamaIndex API docs!
1.
a. Download LlamaIndex API docs and FAISS index from [Hugging Face](https://huggingface.co/datasets/MemGPT/llamaindex-api-docs).
```bash
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/datasets/MemGPT/llamaindex-api-docs
mv llamaindex-api-docs
```
**-- OR --**
b. Build the index:
1. Build `llama_index` API docs with `make text`. Instructions [here](https://github.com/run-llama/llama_index/blob/main/docs/DOCS_README.md). Copy over the generated `_build/text` folder to `memgpt/personas/docqa`.
2. Generate embeddings and FAISS index.
```bash
cd memgpt/personas/docqa
python3 scrape_docs.py
python3 generate_embeddings_for_docs.py all_docs.jsonl
python3 build_index.py --embedding_files all_docs.embeddings.jsonl --output_index_file all_docs.index
3. In the root `MemGPT` directory, run
```bash
python3 main.py --archival_storage_faiss_path= --persona=memgpt_doc --human=basic
```
where `ARCHIVAL_STORAGE_FAISS_PATH` is the directory where `all_docs.jsonl` and `all_docs.index` are located.
If you downloaded from Hugging Face, it will be `memgpt/personas/docqa/llamaindex-api-docs`.
If you built the index yourself, it will be `memgpt/personas/docqa`.
## Support
If you have any further questions, or have anything to share, we are excited to hear your feedback!
* By default MemGPT will use `gpt-4`, so your API key will require `gpt-4` API access
* For issues and feature requests, please [open a GitHub issue](https://github.com/cpacker/MemGPT/issues) or message us on our `#support` channel on [Discord](https://discord.gg/9GEQrxmVyE)
## Datasets
Datasets used in our [paper](https://arxiv.org/abs/2310.08560) can be downloaded at [Hugging Face](https://huggingface.co/MemGPT).
## 🚀 Project Roadmap
- [x] Release MemGPT Discord bot demo (perpetual chatbot)
- [x] Add additional workflows (load SQL/text into MemGPT external context)
- [ ] CLI UI improvements
- [ ] Integration tests
- [ ] Integrate with AutoGen
- [ ] Add official gpt-3.5-turbo support
- [ ] Add support for other LLM backends
- [ ] Release MemGPT family of open models (eg finetuned Mistral)