# PytorchWCT **Repository Path**: xiajw06/PytorchWCT ## Basic Information - **Project Name**: PytorchWCT - **Description**: This is the Pytorch implementation of Universal Style Transfer via Feature Transforms. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-01-13 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Universal Style Transfer This is the Pytorch implementation of [Universal Style Transfer via Feature Transforms](https://arxiv.org/pdf/1705.08086.pdf). Official Torch implementation can be found [here](https://github.com/Yijunmaverick/UniversalStyleTransfer) and Tensorflow implementation can be found [here](https://github.com/eridgd/WCT-TF). ## Prerequisites - [Pytorch](http://pytorch.org/) - [torchvision](https://github.com/pytorch/vision) - Pretrained encoder and decoder [models](https://drive.google.com/file/d/1M5KBPfqrIUZqrBZf78CIxLrMUT4lD4t9/view?usp=sharing) for image reconstruction only (download and uncompress them under models/) - CUDA + CuDNN ## Prepare images Simply put content and image pairs in `images/content` and `images/style` respectively. Note that correspoding conternt and image pairs should have same names. ## Style Transfer ``` python WCT.py --cuda ``` ## Results ### Acknowledgments Many thanks to the author Yijun Li for his kind help. ### Reference Li Y, Fang C, Yang J, et al. Universal Style Transfer via Feature Transforms[J]. arXiv preprint arXiv:1705.08086, 2017.