# time_frequency **Repository Path**: xiaoruochu/time_frequency ## Basic Information - **Project Name**: time_frequency - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-09 - **Last Updated**: 2023-11-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # time_frequency 时频分析 + 时变阶分数傅立叶变换普 + 时变滤波 相关的毕业设计课题全部代码和论文+PPT,供各位通信、电子信息工程等相关学弟学妹参考。 论文: [基于时频分布的多分量信号提取与重建技术研究](./doc/何亮_基于时频分布的多分量信号提取与重建技术研究.pdf) 哈尔滨工业大学 何亮 毕业答辩PPT: [./doc/何亮_基于时频分布的多分量信号提取与重建技术研究_结题PPT.ppt](./doc/何亮_基于时频分布的多分量信号提取与重建技术研究_结题PPT.ppt) 引用代码的要求不高,请客观引用毕业论文或者下面的会议文章: ``` @INPROCEEDINGS{Wu2002:Time, AUTHOR="Longwen Wu and Yaqin Zhao and Liang He and Shengyang He and Guanghui Ren", TITLE="A Time-varying Filtering Algorithm based on Short-time Fractional Fourier Transform", BOOKTITLE="2020 International Conference on Computing, Networking and Communications (ICNC): Wireless Networks (ICNC'20 WN)", ADDRESS="Big Island, USA", DAYS=17, MONTH=feb, YEAR=2020, KEYWORDS="time-varying filtering; short-time fractional Fourier transform; order time-varying; multi-component signal decomposition", ABSTRACT="This paper presents a novel time-varying filtering (TVF) algorithm based on order time-varying short-time fractional Fourier transform (OTV-STFrFT) for multi-component signal analysis, which can process non-linear frequency modulated (NLFM). The idea of combining TVF and the order time-varying STFrFT are mainly inspired by the following two aspects: i) NLFM signals can be locally regarded as segmented linear frequency modulated (LFM) signals; ii) the fractional Fourier transform is the optimal sparse representation of LFM signal. The order time-varying STFrFT can overcome several defects of the existing TVF algorithms in dealing with multi-component signals, of which the mixed components may intersect in the time-frequency distribution. The numerical results shows that the proposed algorithm is superior to the TVF algorithms based on conventional short-time Fourier transform (STFT) and state-of-the-art synchrosqueezed wavelet transforms (SsWT) in multi-component signal analysis." } ``` ## 程序运行方法 先运行 time_frequency\load_paths_all.m 和 tf_tool_box\load_toolbox_all.m 以确保所有文件夹被添加到matlab搜索路径中。 如何输出论文所有图像具体参考: [./doc/程序验收清单_何亮.docx](./doc/程序验收清单_何亮.docx) 目录 time_frequency 下全部是论文核心工作,包括了论文从选题到最终实现的所有代码,能封装都尽量封装成可以通用的函数了。 如果遇到问题,最好尝试先自己解决...... 如果本源码对你有所帮助,可以[点赞支持](./img/URgood.jpg) 也可以关注作者公众号提问~ 关注作者