# keras_learn **Repository Path**: xiwanggit/keras_learn ## Basic Information - **Project Name**: keras_learn - **Description**: keras框架学习 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-16 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### 相关文档 * [Keras中文文档](https://keras.io/zh/) * [Keras API](https://keras.io/api/) * [keras官方GitHub demo](https://github.com/keras-team/keras/tree/master/examples) * [学习笔记](https://blog.csdn.net/fish2009122/article/details/108886065) ### env * Python:3.7.9 * graphviz: https://graphviz.gitlab.io/download/ * docker * start: `docker-compose up -d` * exec: * `docker exec -it docker_id bash` * `python3 /code/model/code/run.py` ### 模型 * 线性回归: Y = W * X + b,一层神经网络 * 输入维度:特征数/列数(行数为样本量) * 输出维度:输出的列数 ![输入图片说明](https://images.gitee.com/uploads/images/2020/0828/210455_d474f7cf_379161.png "线性回归模型.png") * 逻辑回归: 线性回归 + sigmoid(activation):一层神经网络+一个激活函数 * 输入维度:同上 * 输出维度:同上 ![输入图片说明](https://images.gitee.com/uploads/images/2020/0828/210514_a53f58ba_379161.png "逻辑回归模型.png") * LSTM模型:预测PM2.5:一个LSTM隐藏层,可定义隐层神经网络数量 * LSTM * 输入shape:[时序step(时,分,天,周,月,年), 特征数/列](输入shape不包括样本量(行数)) * 输出维度:该层神经网络数 ![输入图片说明](https://images.gitee.com/uploads/images/2020/0828/210536_a6dd587a_379161.png "LSTM模型_pm25.png") * CNN模型: ![输入图片说明](https://images.gitee.com/uploads/images/2020/0911/180428_6d987125_379161.png "多分类RNN.png") * Conv_LSTM模型 ![输入图片说明](https://images.gitee.com/uploads/images/2020/0915/220908_bb9e6e4c_379161.png "CNN_LSTM.png")