# ACMP **Repository Path**: yezhiyun/ACMP ## Basic Information - **Project Name**: ACMP - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-03-08 - **Last Updated**: 2022-03-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ACMP [News] The code for [ACMH](https://github.com/GhiXu/ACMH) is released!!! [News] The code for [ACMM](https://github.com/GhiXu/ACMM) is released!!! [News] The code for [ACMMP](https://github.com/GhiXu/ACMMP) is released!!! ## About This repository contains the code for the paper [Planar Prior Assisted PatchMatch Multi-View Stereo](https://arxiv.org/abs/1912.11744), Qingshan Xu and Wenbing Tao, AAAI2020. If you find this project useful for your research, please cite: ``` @article{Xu2020ACMP, title={Planar Prior Assisted PatchMatch Multi-View Stereo}, author={Xu, Qingshan and Tao, Wenbing}, journal={AAAI Conference on Artificial Intelligence (AAAI)}, year={2020} } @article{Xu2019ACMM, title={Multi-Scale Geometric Consistency Guided Multi-View Stereo}, author={Xu, Qingshan and Tao, Wenbing}, journal={Computer Vision and Pattern Recognition (CVPR)}, year={2019} } ``` ## Dependencies The code has been tested on Ubuntu 14.04 with GTX Titan X. * [Cuda](https://developer.nvidia.com/zh-cn/cuda-downloads) >= 6.0 * [OpenCV](https://opencv.org/) >= 2.4 * [cmake](https://cmake.org/) ## Usage * Complie ACMP ``` cmake . make ``` * Test ``` Use script colmap2mvsnet_acm.py to convert COLMAP SfM result to ACMP input Run ./ACMP $data_folder to get reconstruction results ``` ## Results on high-res ETH3D training dataset [2cm] | Mean | courtyard | delivery_area | electro | facade | kicker | meadow | office | pipes | playgroud | relief | relief_2 | terrace | terrains | |--------|-----------|---------------|---------|--------|--------|--------|--------|--------|-----------|--------|----------|---------|----------| | 79.81 | 86.57 | 85.04 | 86.83 | 69.88 | 77.01 | 64.88 | 75.81 | 71.13 | 71.14 | 84.46 | 84.16 | 90.14 | 90.50 | ## Acknowledgemets This code largely benefits from the following repositories: [Gipuma](https://github.com/kysucix/gipuma) and [COLMAP](https://colmap.github.io/). Thanks to their authors for opening source of their excellent works.