# BN_layer-experience **Repository Path**: yipzcc/BN_layer-experience ## Basic Information - **Project Name**: BN_layer-experience - **Description**: 该库GITHUB地址为https://github.com/Eric-mingjie/network-slimming - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-24 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Network Slimming (Pytorch) This repository contains an official pytorch implementation for the following paper [Learning Efficient Convolutional Networks Through Network Slimming](http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html) (ICCV 2017). [Zhuang Liu](https://liuzhuang13.github.io/), [Jianguo Li](https://sites.google.com/site/leeplus/), [Zhiqiang Shen](http://zhiqiangshen.com/), [Gao Huang](http://www.cs.cornell.edu/~gaohuang/), [Shoumeng Yan](https://scholar.google.com/citations?user=f0BtDUQAAAAJ&hl=en), [Changshui Zhang](http://bigeye.au.tsinghua.edu.cn/english/Introduction.html). Original implementation: [slimming](https://github.com/liuzhuang13/slimming) in Torch. The code is based on [pytorch-slimming](https://github.com/foolwood/pytorch-slimming). We add support for ResNet and DenseNet. Citation: ``` @InProceedings{Liu_2017_ICCV, author = {Liu, Zhuang and Li, Jianguo and Shen, Zhiqiang and Huang, Gao and Yan, Shoumeng and Zhang, Changshui}, title = {Learning Efficient Convolutional Networks Through Network Slimming}, booktitle = {The IEEE International Conference on Computer Vision (ICCV)}, month = {Oct}, year = {2017} } ``` ## Dependencies torch v0.3.1, torchvision v0.2.0 ## Channel Selection Layer We introduce `channel selection` layer to help the pruning of ResNet and DenseNet. This layer is easy to implement. It stores a parameter `indexes` which is initialized to an all-1 vector. During pruning, it will set some places to 0 which correspond to the pruned channels. ## Baseline The `dataset` argument specifies which dataset to use: `cifar10` or `cifar100`. The `arch` argument specifies the architecture to use: `vgg`,`resnet` or `densenet`. The depth is chosen to be the same as the networks used in the paper. ```shell python main.py --dataset cifar10 --arch vgg --depth 19 python main.py --dataset cifar10 --arch resnet --depth 164 python main.py --dataset cifar10 --arch densenet --depth 40 ``` ## Train with Sparsity ```shell python main.py -sr --s 0.0001 --dataset cifar10 --arch vgg --depth 19 python main.py -sr --s 0.00001 --dataset cifar10 --arch resnet --depth 164 python main.py -sr --s 0.00001 --dataset cifar10 --arch densenet --depth 40 ``` ## Prune ```shell python vggprune.py --dataset cifar10 --depth 19 --percent 0.7 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT] python resprune.py --dataset cifar10 --depth 164 --percent 0.4 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT] python denseprune.py --dataset cifar10 --depth 40 --percent 0.4 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT] ``` The pruned model will be named `pruned.pth.tar`. ## Fine-tune ```shell python main.py --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 19 --epochs 160 ``` ## Results The results are fairly close to the original paper, whose results are produced by Torch. Note that due to different random seeds, there might be up to ~0.5%/1.5% fluctation on CIFAR-10/100 datasets in different runs, according to our experiences. ### CIFAR10 | CIFAR10-Vgg | Baseline | Sparsity (1e-4) | Prune (70%) | Fine-tune-160(70%) | | :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: | | Top1 Accuracy (%) | 93.77 | 93.30 | 32.54 | 93.78 | | Parameters | 20.04M | 20.04M | 2.25M | 2.25M | | CIFAR10-Resnet-164 | Baseline | Sparsity (1e-5) | Prune(40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) | | :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: | :----------------:| :--------------------:| | Top1 Accuracy (%) | 94.75 | 94.76 | 94.58 | 95.05 | 47.73 | 93.81 | | Parameters | 1.71M | 1.73M | 1.45M | 1.45M | 1.12M | 1.12M | | CIFAR10-Densenet-40 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) | | :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: | :--------------------: | :-----------------:| | Top1 Accuracy (%) | 94.11 | 94.17 | 94.16 | 94.32 | 89.46 | 94.22 | | Parameters | 1.07M | 1.07M | 0.69M | 0.69M | 0.49M | 0.49M | ### CIFAR100 | CIFAR100-Vgg | Baseline | Sparsity (1e-4) | Prune (50%) | Fine-tune-160(50%) | | :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: | | Top1 Accuracy (%) | 72.12 | 72.05 | 5.31 | 73.32 | | Parameters | 20.04M | 20.04M | 4.93M | 4.93M | | CIFAR100-Resnet-164 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) | | :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: |:--------------------: | :-----------------:| | Top1 Accuracy (%) | 76.79 | 76.87 | 48.0 | 77.36 | --- | --- | | Parameters | 1.73M | 1.73M | 1.49M | 1.49M |--- | --- | Note: For results of pruning 60% of the channels for resnet164-cifar100, in this implementation, sometimes some layers are all pruned and there would be error. However, we also provide a [mask implementation](https://github.com/Eric-mingjie/network-slimming/tree/master/mask-impl) where we apply a mask to the scaling factor in BN layer. For mask implementaion, when pruning 60% of the channels in resnet164-cifar100, we can also train the pruned network. | CIFAR100-Densenet-40 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) | | :---------------: | :------: | :--------------------------: | :-----------------: | :-------------------: |:--------------------: | :-----------------:| | Top1 Accuracy (%) | 73.27 | 73.29 | 67.67 | 73.76 | 19.18 | 73.19 | | Parameters | 1.10M | 1.10M | 0.71M | 0.71M | 0.50M | 0.50M | ## Contact sunmj15 at gmail.com liuzhuangthu at gmail.com