# LMLT **Repository Path**: ym333mmm/LMLT ## Basic Information - **Project Name**: LMLT - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-14 - **Last Updated**: 2024-09-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # LMLT(Low-to-high Multi-Level Vision Transformer) Jeongsoo Kim, Jongho Nang, Junsuk Choe* * : Corresponding author ### Requirements ``` # Install Packages pip install -r requirements.txt pip install matplotlib # Install BasicSR python3 setup.py develop ``` ### Dataset We used DIV2K, Flickr2K as Training dataset. You can download two datasets at https://github.com/dslisleedh/Download_df2k/blob/main/download_df2k.sh and prepare other test datasets at https://github.com/XPixelGroup/BasicSR/blob/master/docs/DatasetPreparation.md#Common-Image-SR-Datasets And also, you'd better extract subimages using ``` python3 scripts/data_preparation/extract_subimages.py ``` By running the code above, you may get subimages of training datasets. ### Training You can train LMLT following commands below ``` python3 basicsr/train.py -opt options/train/LMLT/train_tiny(base, large)_DF2K_X2(3, 4).yml ``` And also, we set `torch.backends.cudnn.benchmark` to `True` to accelerate training process so that results can be fluctuated a little. If you want to get fixed output, you should set it to `False` and set `torch.backends.cudnn.deterministic` to `True`. ### Test You can test LMLT following commands below ``` python3 basicsr/test.py -opt options/test/LMLT/test_tiny(base, large)_benchmark_X2(3, 4).yml ``` ### Result ![Readme1](https://github.com/user-attachments/assets/67dbd3ea-fcd4-46fb-a8d3-0b7a9608634a) Result table with #Param and #FLOPs ![image](https://github.com/user-attachments/assets/bbd6b28c-9bac-42c7-956d-2805e66382fb) Result table with GPU Consumption and AVG Time ### Results We will provide visual results of LMLT_Base x4 scale soon. If you want to see only architecture, please refer to `LMLT.py`.