# LMLT
**Repository Path**: ym333mmm/LMLT
## Basic Information
- **Project Name**: LMLT
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-09-14
- **Last Updated**: 2024-09-14
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# LMLT(Low-to-high Multi-Level Vision Transformer)
Jeongsoo Kim, Jongho Nang, Junsuk Choe*
* : Corresponding author
### Requirements
```
# Install Packages
pip install -r requirements.txt
pip install matplotlib
# Install BasicSR
python3 setup.py develop
```
### Dataset
We used DIV2K, Flickr2K as Training dataset.
You can download two datasets at https://github.com/dslisleedh/Download_df2k/blob/main/download_df2k.sh
and prepare other test datasets at https://github.com/XPixelGroup/BasicSR/blob/master/docs/DatasetPreparation.md#Common-Image-SR-Datasets
And also, you'd better extract subimages using
```
python3 scripts/data_preparation/extract_subimages.py
```
By running the code above, you may get subimages of training datasets.
### Training
You can train LMLT following commands below
```
python3 basicsr/train.py -opt options/train/LMLT/train_tiny(base, large)_DF2K_X2(3, 4).yml
```
And also, we set `torch.backends.cudnn.benchmark` to `True` to accelerate training process so that results can be fluctuated a little. If you want to get fixed output, you should set it to `False` and set `torch.backends.cudnn.deterministic` to `True`.
### Test
You can test LMLT following commands below
```
python3 basicsr/test.py -opt options/test/LMLT/test_tiny(base, large)_benchmark_X2(3, 4).yml
```
### Result

Result table with #Param and #FLOPs

Result table with GPU Consumption and AVG Time
### Results
We will provide visual results of LMLT_Base x4 scale soon.
If you want to see only architecture, please refer to `LMLT.py`.