# TripleNet **Repository Path**: ymcui/TripleNet ## Basic Information - **Project Name**: TripleNet - **Description**: TripleNet: Triple Attention Network for Multi-Turn Response Selection in Retrieval-based Chatbots (CoNLL2019) - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-02 - **Last Updated**: 2021-07-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TripleNet: Triple Attention Network for Multi-Turn Response Selection in Retrieval-based Chatbots This repository contains resources of the following [CoNLL 2019](https://www.conll.org) paper. Title: TripleNet: Triple Attention Network for Multi-Turn Response Selection in Retrieval-based Chatbots Authors: Wentao Ma, Yiming Cui, Nan Shao, Su He, Wei-Nan Zhang, Ting Liu, Shijin Wang, Guoping Hu Link: [https://www.aclweb.org/anthology/K19-1069.pdf](https://www.aclweb.org/anthology/K19-1069.pdf) ## News We have uploaded our source codes and put the dicts for the model in [google drive](https://drive.google.com/file/d/1wMYiowGHywX43EJebJaj0Pi2oEjbqcKX/view?usp=sharing). ## Notes For reproducing the performance of TripleNet, please download the datasets of [Ubuntu](https://www.dropbox.com/s/2fdn26rj6h9bpvl/ubuntudata.zip) and [Douban](https://github.com/MarkWuNLP/MultiTurnResponseSelection) and put them in the 'data' directory, then train or test the model just like the scripts in 'shell'. As we read the data via generator, so please shuffle the traning set before training. ## Requirements Python3.6 Keras2.2.4 (or >=2.0) Tensorflow1.10.0 (or >=1.10.0) (We run the codes in Python3.6 + Keras2.2.4 + Tensorflow1.10.0) ## Citation If you use the data or codes in this repository, please cite our paper ``` @inproceedings{ma-etal-2019-triplenet, title = "{T}riple{N}et: Triple Attention Network for Multi-Turn Response Selection in Retrieval-Based Chatbots", author = "Ma, Wentao and Cui, Yiming and Shao, Nan and He, Su and Zhang, Wei-Nan and Liu, Ting and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/K19-1069", pages = "737--746" } ``` ## Issues If there is any problem, please submit a GitHub Issue.