# end2end-asr-pytorch **Repository Path**: ytzy/end2end-asr-pytorch ## Basic Information - **Project Name**: end2end-asr-pytorch - **Description**: ASR端对端 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-02-03 - **Last Updated**: 2021-02-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## End-to-End Speech Recognition on Pytorch ### Transformer-based Speech Recognition Model [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) If you use any source codes included in this toolkit in your work, please cite the following paper. - Winata, G. I., Madotto, A., Wu, C. S., & Fung, P. (2019). Code-Switched Language Models Using Neural Based Synthetic Data from Parallel Sentences. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL) (pp. 271-280). - Winata, G. I., Cahyawijaya, S., Lin, Z., Liu, Z., & Fung, P. (2019). Lightweight and Efficient End-to-End Speech Recognition Using Low-Rank Transformer. arXiv preprint arXiv:1910.13923. (Accepted by ICASSP 2020) - Zhou, S., Dong, L., Xu, S., & Xu, B. (2018). Syllable-Based Sequence-to-Sequence Speech Recognition with the Transformer in Mandarin Chinese. Proc. Interspeech 2018, 791-795. ### Highlights - supports batch parallelization on multi-GPU - supports multiple dataset training and evaluation ### Requirements - Python 3.5 or later - Install Pytorch 1.4 (https://pytorch.org/) - Install torchaudio (https://github.com/pytorch/audio) - run ``❱❱❱ bash requirement.sh`` ### Results AiShell-1 | Decoding strategy | CER | | ------------- | ------------- | | Greedy | 14.5% | | Beam-search (beam width=8) | 13.5% | ### Data #### AiShell-1 (Chinese) To preprocess the data. You need to download the data from https://www.openslr.org/33/. I will add a script to automate the process. ```console ❱❱❱ python data/aishell.py ``` #### Librispeech (English) To automatically download the data ```console ❱❱❱ python data/librispeech.py ``` ### Training ```console usage: train.py [-h] [--train-manifest-list] [--valid-manifest-list] [--test-manifest-list] [--cuda] [--verbose] [--batch-size] [--labels-path] [--lr] [--name] [--save-folder] [--save-every] [--feat_extractor] [--emb_trg_sharing] [--shuffle] [--sample_rate] [--label-smoothing] [--window-size] [--window-stride] [--window] [--epochs] [--src-max-len] [--tgt-max-len] [--warmup] [--momentum] [--lr-anneal] [--num-layers] [--num-heads] [--dim-model] [--dim-key] [--dim-value] [--dim-input] [--dim-inner] [--dim-emb] [--shuffle] ``` #### Parameters ``` - feat_extractor: "emb_cnn" or "vgg_cnn" as the feature extractor, or set "" for none - emb_cnn: add 4-layer 2D CNN - vgg_cnn: add 6-layer 2D CNN - cuda: train on GPU - shuffle: randomly shuffle every batch ``` #### Example ```console ❱❱❱ python train.py --train-manifest-list data/manifests/aishell_train_manifest.csv --valid-manifest-list data/manifests/aishell_dev_manifest.csv --test-manifest-list data/manifests/aishell_test_manifest.csv --cuda --batch-size 12 --labels-path data/labels/aishell_labels.json --lr 1e-4 --name aishell_drop0.1_cnn_batch12_4_vgg_layer4 --save-folder save/ --save-every 5 --feat_extractor vgg_cnn --dropout 0.1 --num-layers 4 --num-heads 8 --dim-model 512 --dim-key 64 --dim-value 64 --dim-input 161 --dim-inner 2048 --dim-emb 512 --shuffle --min-lr 1e-6 --k-lr 1 ``` Use ``python train.py --help`` for more parameters and options. #### Results ##### AiShell-1 Loss Curve ### Multi-GPU Training ``` usage: train.py [--parallel] [--device-ids] ``` #### Parameters ``` - parallel: split batches to GPUs (the number of batch has to be divisible by the number of GPUs) - device-ids: GPU ids ``` #### Example ```console ❱❱❱ CUDA_VISIBLE_DEVICES=0,1 python train.py --train-manifest-list data/manifests/aishell_train_manifest.csv --valid-manifest-list data/manifests/aishell_dev_manifest.csv --test-manifest-list data/manifests/aishell_test_manifest.csv --cuda --batch-size 12 --labels-path data/labels/aishell_labels.json --lr 1e-4 --name aishell_drop0.1_cnn_batch12_4_vgg_layer4 --save-folder save/ --save-every 5 --feat_extractor vgg_cnn --dropout 0.1 --num-layers 4 --num-heads 8 --dim-model 512 --dim-key 64 --dim-value 64 --dim-input 161 --dim-inner 2048 --dim-emb 512 --shuffle --min-lr 1e-6 --k-lr 1 --parallel --device-ids 0 1 ``` ### Test ``` usage: test.py [-h] [--test-manifest] [--cuda] [--verbose] [--continue_from] ``` #### Parameters ``` - cuda: test on GPU - continue_from: path to the trained model ``` #### Example ```console ❱❱❱ python test.py --test-manifest-list libri_test_clean_manifest.csv --cuda --continue_from save/model ``` Use ``python multi_train.py --help`` for more parameters and options. ### Custom Dataset #### Manifest file To use your own dataset, you must create a CSV manifest file using the following format: ``` /path/to/audio.wav,/path/to/text.txt /path/to/audio2.wav,/path/to/text2.txt ... ``` Each line contains the path to the audio file and transcript file separated by a comma. #### Label file You need to specify all characters in the corpus by using the following JSON format: ``` [ "_", "'", "A", ..., "Z", " " ] ``` ## Bug Report Feel free to create an issue