# ClariNet **Repository Path**: zebiak/ClariNet ## Basic Information - **Project Name**: ClariNet - **Description**: A Pytorch Implementation of ClariNet - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-16 - **Last Updated**: 2021-06-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram --> Waveform) # Requirements PyTorch 0.4.1 & python 3.6 & Librosa # Examples #### Step 1. Download Dataset - LJSpeech : [https://keithito.com/LJ-Speech-Dataset/](https://keithito.com/LJ-Speech-Dataset/) #### Step 2. Preprocessing (Preparing Mel Spectrogram) `python preprocessing.py --in_dir ljspeech --out_dir DATASETS/ljspeech` #### Step 3. Train Gaussian Autoregressive WaveNet (Teacher) `python train.py --model_name wavenet_gaussian --batch_size 8 --num_blocks 2 --num_layers 10` #### Step 4. Synthesize (Teacher) `--load_step CHECKPOINT` : the # of the pre-trained *teacher* model's global training step (also depicted in the trained weight file) `python synthesize.py --model_name wavenet_gaussian --num_blocks 2 --num_layers 10 --load_step 10000 --num_samples 5` #### Step 5. Train Gaussian Inverse Autoregressive Flow (Student) `--teacher_name (YOUR TEACHER MODEL'S NAME)` `--teacher_load_step CHECKPOINT` : the # of the pre-trained *teacher* model's global training step (also depicted in the trained weight file) `--KL_type qp` : Reversed KL divegence KL(q||p) or `--KL_type pq` : Forward KL divergence KL(p||q) `python train_student.py --model_name wavenet_gaussian_student --teacher_name wavenet_gaussian --teacher_load_step 10000 --batch_size 2 --num_blocks_t 2 --num_layers_t 10 --num_layers_s 10 --KL_type qp` #### Step 6. Synthesize (Student) `--model_name (YOUR STUDENT MODEL'S NAME)` `--load_step CHECKPOINT` : the # of the pre-trained *student* model's global training step (also depicted in the trained weight file) `--teacher_name (YOUR TEACHER MODEL'S NAME)` `--teacher_load_step CHECKPOINT` : the # of the pre-trained *teacher* model's global training step (also depicted in the trained weight file) `python synthesize_student.py --model_name wavenet_gaussian_student --load_step 10000 --teacher_name wavenet_gaussian --teacher_load_step 10000 --num_blocks_t 2 --num_layers_t 10 --num_layers_s 10 --num_samples 5` # References - WaveNet vocoder : [https://github.com/r9y9/wavenet_vocoder](https://github.com/r9y9/wavenet_vocoder) - ClariNet : [https://arxiv.org/abs/1807.07281](https://arxiv.org/abs/1807.07281)