# 3D_Object_Reconstruction **Repository Path**: zhangwx21/Object_Reconstruction ## Basic Information - **Project Name**: 3D_Object_Reconstruction - **Description**: A Novel Hybrid Ensemble Approach For 3D Object Reconstruction from Multi-View Monocular RGB images for Robotic Simulations - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-06 - **Last Updated**: 2024-06-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 3D_Object_Reconstruction #### 介绍 A Novel Hybrid Ensemble Approach For 3D Object Reconstruction from Multi-View Monocular RGB images for Robotic Simulations. Code comes from: https://github.com/Ajithbalakrishnan/3D-Object-Reconstruction-from-Multi-View-Monocular-RGB-images #### 算法架构 ![Image text](https://gitee.com/zhangwx21/Object_Reconstruction/blob/master/structure_updated.png) #### 数据集 ShapeNet rendered images http://cvgl.stanford.edu/data2/ShapeNetRendering.tgz ShapeNet voxelized models http://cvgl.stanford.edu/data2/ShapeNetVox32.tg #### 运行环境 python 3.5 tensorflow 1.13.0 numpy 1.13.3 scipy 0.19.0 matplotlib skimage PyMCubes #### 训练模型 The code runs on HUAWEI's Modelarts. The main program is ./Code/main_AttSets.py #### 其他说明 1. Unzip the data set to ./Data/ShapeNetRendering and ./Data/ShapeNetVox32 2. The trained model has been saved in ./Model/train_mod. You can use tensorboard to view the training process: ./Model/test_sum and ./Model/train_sum. obs link: obs://obsdeeplearning/3DOR/MA-Code-09-03/output/V0006/train_mod/ obs://obsdeeplearning/3DOR/MA-Code-09-03/output/V0006/test_sum/ obs://obsdeeplearning/3DOR/MA-Code-09-03/output/V0006/train_sum/ 3. The training log on Modelarts has been saved in the log folder. 4. Due to the limitation of running time, the program only trained on the airplane data set(02691156).