# LinearRAG **Repository Path**: zhch158_admin/LinearRAG ## Basic Information - **Project Name**: LinearRAG - **Description**: No description available - **Primary Language**: Python - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-26 - **Last Updated**: 2025-11-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # **LinearRAG: Linear Graph Retrieval-Augmented Generation on Large-scale Corpora** > A relation-free graph construction method for efficient GraphRAG. It eliminates LLM token costs during graph construction, making GraphRAG faster and more efficient than ever.

arXiv:2506.08938 HuggingFace GitHub

--- ## 🚀 **Highlights** - ✅ **Context-Preserving**: Relation-free graph construction, relying on lightweight entity recognition and semantic linking to achieve comprehensive contextual comprehension. - ✅ **Complex Reasoning**: Enables deep retrieval via semantic bridging, achieving multi-hop reasoning in a single retrieval pass without requiring explicit relational graphs. - ✅ **High Scalability**: Zero LLM token consumption, faster processing speed, and linear time/space complexity.

Framework Overview

--- ## 🎉 **News** - **[2025-10-27]** We release **[LinearRAG](https://github.com/DEEP-PolyU/LinearRAG)**, a relation-free graph construction method for efficient GraphRAG. - **[2025-06-06]** We release **[GraphRAG-Bench](https://github.com/GraphRAG-Bench/GraphRAG-Benchmark.git)**, the benchmark for evaluating GraphRAG models. - **[2025-01-21]** We release the **[GraphRAG survey](https://github.com/DEEP-PolyU/Awesome-GraphRAG)**. --- ## 🛠️ **Usage** ### 1️⃣ Install Dependencies **Step 1: Install Python packages** ```bash pip install -r requirements.txt ``` **Step 2: Download Spacy language model** ```bash python -m spacy download en_core_web_trf ``` > **Note:** For the `medical` dataset, you need to install the scientific/biomedical Spacy model: ```bash pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.5.3/en_core_sci_scibert-0.5.3.tar.gz ``` **Step 3: Set up your OpenAI API key** ```bash export OPENAI_API_KEY="your-api-key-here" export OPENAI_BASE_URL="your-base-url-here" ``` **Step 4: Download Datasets** Download the datasets from HuggingFace and place them in the `dataset/` folder: ```bash git clone https://huggingface.co/datasets/Zly0523/linear-rag cp -r linear-rag/dataset/* dataset/ ``` **Step 5: Prepare Embedding Model** Make sure the embedding model is available at: ``` model/all-mpnet-base-v2/ ``` ### 2️⃣ Quick Start Example ```bash SPACY_MODEL="en_core_web_trf" EMBEDDING_MODEL="model/all-mpnet-base-v2" DATASET_NAME="2wikimultihop" LLM_MODEL="gpt-4o-mini" MAX_WORKERS=16 python run.py \ --spacy_model ${SPACY_MODEL} \ --embedding_model ${EMBEDDING_MODEL} \ --dataset_name ${DATASET_NAME} \ --llm_model ${LLM_MODEL} \ --max_workers ${MAX_WORKERS} ``` ## 🎯 **Performance**
framework **Main results of end-to-end performance**
framework **Efficiency and performance comparison.**
## 📖 Citation If you find this work helpful, please consider citing us: ```bibtex @article{zhuang2025linearrag, title={LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora}, author={Zhuang, Luyao and Chen, Shengyuan and Xiao, Yilin and Zhou, Huachi and Zhang, Yujing and Chen, Hao and Zhang, Qinggang and Huang, Xiao}, journal={arXiv preprint arXiv:2510.10114}, year={2025} } ``` ## 📬 Contact ✉️ Email: zhuangluyao523@gmail.com