# SparseViT2025 **Repository Path**: zxnvszyk/SparseViT2025 ## Basic Information - **Project Name**: SparseViT2025 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-27 - **Last Updated**: 2025-02-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Can We Get Rid of Handcrafted Feature Extractors? SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization through Spare-Coding Transformer Official repository for the AAAI2025 paper *Can We Get Rid of Handcrafted Feature Extractors? SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization through Spare-Coding Transformer* [[paper]](https://arxiv.org/abs/2412.14598) [[website]](https://github.com/scu-zjz/SparseViT).

SparseViT Framework Diagram

In summary, SparseViT leverages the distinction between semantic and non-semantic features, enabling the model to adaptively extract non-semantic features that are more critical for image manipulation localization. This provides a novel approach to precisely identifying manipulated regions. ## Test setup (Code + Models)
1) Set up the coding environment
- First, clone the repository: ```bash git clone https://github.com/scu-zjz/SparseViT.git ``` - Our environment ``` Ubuntu LTS 20.04.1 CUDA 11.5 + cudnn 8.4.0 Python 3.10 PyTorch 2.4 ``` - You should install the packages in [requirements.txt](https://github.com/scu-zjz/SparseViT/blob/main/requirements.txt) ```bash pip install -r requirements.txt ```
2) Download our pretrained checkpoints
- Download our pretrained checkpoints from [Google Drive](https://drive.google.com/drive/folders/1v-8I1WCbR0hpaV434yPgsFiimu6wWLCW?usp=drive_link) and place them in the checkpoint directory.
## Scripts This should be super easy! Simply run ``` python main_test.py ``` Here, we have simply provided a basic test of SparseViT. Of course, you can train and test SparseViT within our proposed [IMDL-BenCo](https://github.com/scu-zjz/IMDLBenCo) framework, as they are fully compatible. ## Citation If you find our code useful, please consider citing us and give us a star! ``` @misc{su2024can, title={Can We Get Rid of Handcrafted Feature Extractors? SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization Through Spare-Coding Transformer}, author={Su, Lei and Ma, Xiaochen and Zhu, Xuekang and Niu, Chaoqun and Lei, Zeyu and Zhou, Ji-Zhe}, year={2024}, eprint={2412.14598}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```