# SparseViT2025
**Repository Path**: zxnvszyk/SparseViT2025
## Basic Information
- **Project Name**: SparseViT2025
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-02-27
- **Last Updated**: 2025-02-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Can We Get Rid of Handcrafted Feature Extractors? SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization through Spare-Coding Transformer
Official repository for the AAAI2025 paper *Can We Get Rid of Handcrafted Feature Extractors? SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization through Spare-Coding Transformer* [[paper]](https://arxiv.org/abs/2412.14598) [[website]](https://github.com/scu-zjz/SparseViT).
In summary, SparseViT leverages the distinction between semantic and non-semantic features, enabling the model to adaptively extract non-semantic features that are more critical for image manipulation localization. This provides a novel approach to precisely identifying manipulated regions.
## Test setup (Code + Models)
1) Set up the coding environment
- First, clone the repository:
```bash
git clone https://github.com/scu-zjz/SparseViT.git
```
- Our environment
```
Ubuntu LTS 20.04.1
CUDA 11.5 + cudnn 8.4.0
Python 3.10
PyTorch 2.4
```
- You should install the packages in [requirements.txt](https://github.com/scu-zjz/SparseViT/blob/main/requirements.txt)
```bash
pip install -r requirements.txt
```
2) Download our pretrained checkpoints
- Download our pretrained checkpoints from [Google Drive](https://drive.google.com/drive/folders/1v-8I1WCbR0hpaV434yPgsFiimu6wWLCW?usp=drive_link) and place them in the checkpoint directory.
## Scripts
This should be super easy! Simply run
```
python main_test.py
```
Here, we have simply provided a basic test of SparseViT. Of course, you can train and test SparseViT within our proposed [IMDL-BenCo](https://github.com/scu-zjz/IMDLBenCo) framework, as they are fully compatible.
## Citation
If you find our code useful, please consider citing us and give us a star!
```
@misc{su2024can,
title={Can We Get Rid of Handcrafted Feature Extractors? SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization Through Spare-Coding Transformer},
author={Su, Lei and Ma, Xiaochen and Zhu, Xuekang and Niu, Chaoqun and Lei, Zeyu and Zhou, Ji-Zhe},
year={2024},
eprint={2412.14598},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```