本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法。
本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法。
本项目是基于Pytorch的声音分类项目,旨在实现对各种环境声音、动物叫声和语种的识别。项目提供了多种声音分类模型,如EcapaTdnn、PANNS、ResNetSE、CAMPPlus和ERes2Net,以支持不同的应用场景。
基于PaddlePaddle实现的语音识别,中文语音识别。项目完善,识别效果好。支持Windows,Linux下训练和预测,支持Nvidia Jetson开发板预测。
Pytorch实现的流式与非流式的自动语音识别框架,同时兼容在线和离线识别,目前支持Conformer、Squeezeformer、DeepSpeech2模型,支持多种数据增强方法。
基于PaddlePaddle实现端到端中文语音识别,从入门到实战,超简单的入门案例,超实用的企业项目。支持当前最流行的DeepSpeech2、Conformer、Squeezeformer模型
微调Whisper语音识别模型,支持无时间戳数据训练,有时间戳数据训练、无语音数据训练。加速推理,支持Web部署、Windows桌面部署和Android部署
本项目是基于PaddlePaddle的声音分类项目,旨在实现对各种环境声音、动物叫声和语种的识别。项目提供了多种声音分类模型,如EcapaTdnn、PANNS、ResNetSE、CAMPPlus和ERes2Net,以支持不同的应用场景。
本项目是基于Pytorch的语音合成项目,使用的是VITS,VITS是一种语音合成方法,这种时端到端的模型使用起来非常简单,不需要文本对齐等太复杂的流程,直接一键训练和生成,大大降低了学习门槛。
本项目是基于PaddlePaddle的语音合成项目,使用的是VITS,VITS是一种语音合成方法,这种时端到端的模型使用起来非常简单,不需要文本对齐等太复杂的流程,直接一键训练和生成,大大降低了学习门槛。